We consider approximate PCPs for multidimensional bin-packing problems. In particular, we show how a verifier can be quickly convinced that a set of multidimensional blocks can be packed into a small number of bins. The running time of the verifier is bounded by O(T(n)), where T(n) is the time required to test for heaviness. We give heaviness testers that can test heaviness of an element in the domain [1, ...,n] d in time O((log n) d ). We also also give approximate PCPs with efficient verifiers for recursive bin packing and multidimensional routing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. J. of the ACM 45(3), 501–555 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Batu, T., Rubinfeld, R., White, P.: Fast approximate PCPs for multidimensional bin-packing problems,
  3. 3.
    Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, 3–40 (1991)Google Scholar
  4. 4.
    Babai, L., Fortnow, L., Lund, C., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 31st Foundations of Computer Science, pp. 16–25 (1990)Google Scholar
  5. 5.
    Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. In: Proc. 30th Symposium on Theory of Computing, pp. 259–268 (1998)Google Scholar
  7. 7.
    Ergün, F., Kumar, R., Rubinfeld, R.: Fast PCPs for approximations. In: Proc. 31st Symposium on Theory of Computing (1999)Google Scholar
  8. 8.
    Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. Theoretical Computer Science 134(2), 545–557 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D.: Testing Monotonicity. In: Proc. 39th Symposium on Foundations of Computer Science (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Tuğkan Batu
    • 1
  • Ronitt Rubinfeld
    • 1
  • Patrick White
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations