Advertisement

Abstract

A hitting-set generator is a deterministic algorithm which generates a set of strings that intersects every dense set recognizable by a small circuit. A polynomial time hitting-set generator readily implies \(\mathcal{RP} = \mathcal{P}\). Andreev et. al. (ICALP’96, and JACM 1998) showed that if polynomial-time hitting-set generator in fact implies the much stronger conclusion \(\mathcal{BPP} = \mathcal{P}\). We simplify and improve their (and later) constructions.

Keywords

Derandomization  \(\mathcal{RP}\)  \(\mathcal{BPP}\) one-sided error versus two-sided error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P.: A new general derandomization method. Journal of the Association for Computing Machinery (J. of ACM) 45(1), 179–213 (1998); Hitting Sets Derandomize BPP. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak Random Sources, Hitting Sets, and BPP Simulations. To appear in SIAM J. on Comput. Preliminary version in 38th FOCS, 264–272 (1997)Google Scholar
  3. 3.
    Buhrman, H., Fortnow, L.: One-sided versus two-sided randomness. In: Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science. LNCS. Springer, Berlin (1999)Google Scholar
  4. 4.
    Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Goldreich, O., Zuckerman, D.: Another proof that BPP subseteq PH (and more). ECCC, TR97-045 (1997)Google Scholar
  6. 6.
    Impagliazzo, R., Wigderson, A.: P=BPP unless E has Subexponential Circuits: Derandomizing the XOR Lemma. in: 29th STOC, pp. 220–229 (1997)Google Scholar
  7. 7.
    Raz, R., Reingold, O., Vadhan, S.: Extracting all the Randomness and Reducing the Error in Trevisan’s Extractors. In: 31st STOC, pp. 149–158 (1999)Google Scholar
  8. 8.
    Sipser, M.: A complexity-theoretic approach to randomness. In: 15th STOC, pp. 330–335 (1983)Google Scholar
  9. 9.
    Trevisan, L.: Constructions of Near-Optimal Extractors Using Pseudo- Random Generators. In: 31st STOC, pp. 141–148 (1999)Google Scholar
  10. 10.
    Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorithmica 16, 367–391 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Oded Goldreich
    • 1
  • Avi Wigderson
    • 2
  1. 1.Department of Computer ScienceWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institute of Computer ScienceThe Hebrew University of Jerusalem Givat-RamJerusalemIsrael

Personalised recommendations