Improved Testing Algorithms for Monotonicity

  • Yevgeniy Dodis
  • Oded Goldreich
  • Eric Lehman
  • Sofya Raskhodnikova
  • Dana Ron
  • Alex Samorodnitsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1671)


We present improved algorithms for testing monotonicity of functions. Namely, given the ability to query an unknown function f: Σ n ↦ Ξ, where Σ and Ξ are finite ordered sets, the test always accepts a monotone f, and rejects f with high probability if it is ε-far from being monotone (i.e., every monotone function differs from f on more than an ε fraction of the domain). For any ε > 0, the query complexity of the test is O((n/ε) · log ∣Σ ∣ · log ∣Ξ∣). The previous best known bound was \(\tilde{O}((n^2/\epsilon) \cdot \vert\Sigma\vert^2 \cdot \vert\Xi\vert)\).

We also present an alternative test for the boolean range Ξ = {0,1} whose query complexity O(n 2/ε 2 ) is independent of alphabet size ∣Σ∣.


Boolean Function Monotone Function Query Complexity Algorithmic Schema Proof Sketch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. JACM 45(3), 501–555 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arora, S., Sudan, S.: Improved low degree testing and its applications. In: Proceedings of STOC 1997, pp. 485–495 (1997)Google Scholar
  3. 3.
    Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing in characteristic two. In: Proceedings of FOCS 1995, pp. 432–441 (1995)Google Scholar
  4. 4.
    Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximation. In: Proceedings of STOC 1993, pp. 294–304 (1993)Google Scholar
  5. 5.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. JACM 47, 549–595 (1993)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonocity (1999), Available from ECCC
  7. 7.
    Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spotcheckers. In: Proceedings of STOC 1998, pp. 259–268 (1998)Google Scholar
  8. 8.
    Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Selftesting/ correcting for polynomials and for approximate functions. In: Proceedings of STOC 1991, pp. 32–42 (1991)Google Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D.: Testing monotonicity. In: Proceedings of FOCS 1998 (1998)Google Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 45(4), 653–750 (1998); An extended abstract appeared in the proceedings of FOCS 1996zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: Proceedings of STOC 1997, pp. 406–415 (1997)Google Scholar
  12. 12.
    Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree graphs. In: Proceedings of STOC 1998, pp. 289–298 (1998); To appear in Combinatorica (1999)Google Scholar
  13. 13.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a subconstant error-probability PCP characterization of NP. In: Proceedings of STOC 1997, pp. 475–484 (1997)Google Scholar
  14. 14.
    Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yevgeniy Dodis
    • 1
  • Oded Goldreich
    • 2
  • Eric Lehman
    • 1
  • Sofya Raskhodnikova
    • 1
  • Dana Ron
    • 3
  • Alex Samorodnitsky
    • 4
  1. 1.Lab for Computer Science, MITCambridgeUSA
  2. 2.Dept. of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Dept. of EE-SystemsTel Aviv UniversityRamat AvivIsrael
  4. 4.DIMACS CenterRutgers UniversityPiscatawayUSA

Personalised recommendations