Skip to main content

Multistep Filtering Operators for Ordinary Differential Equations

  • Conference paper
Principles and Practice of Constraint Programming – CP’99 (CP 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1713))

Abstract

Interval methods for ordinary differential equations (ODEs) provide guaranteed enclosures of the solutions and numerical proofs of existence and unicity of the solution. Unfortunately, they may result in large over-approximations of the solution because of the loss of precision in interval computations and the wrapping effect. The main open issue in this area is to find tighter enclosures of the solution, while not sacrificing efficiency too much. This paper takes a constraint satisfaction approach to this problem, whose basic idea is to iterate a forward step to produce an initial enclosure with a pruning step that tightens it. The paper focuses on the pruning step and proposes novel multistep filtering operators for ODEs. These operators are based on interval extensions of a multistep solution that are obtained by using (Lagrange and Hermite) interpolation polynomials and their error terms. The paper also shows how traditional techniques (such as mean-value forms and coordinate transformations) can be adapted to this new context. Preliminary experimental results illustrate the potential of the approach, especially on stiff problems, well-known to be very difficult to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberth, O.: Precise Numerical Analysis. William Brown (1988)

    Google Scholar 

  2. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  3. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Chichester (1988)

    Google Scholar 

  4. Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.): Computational Differentiation: Techniques, Applications, and Tools. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  5. Corliss, G.F.: Applications of differentiation arithmetic. In: Moore, R.E. (ed.) Reliability in Computing, pp. 127–148. Academic Press, London (1988)

    Google Scholar 

  6. Deville, Y., Janssen, M., Van Hentenryck, P.: Consistency Techniques in Ordinary Differential Equations. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 162–176. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Kincaid, D., Cheney, W.: Numerical Analysis. Brooks/Cole (1996)

    Google Scholar 

  8. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value problems. In: Kaucher, E.W., Kulisch, U.W., Ullrich, C. (eds.) Computer Arithmetic: Scientific Computation and Programming Languages, pp. 255–286. Wiley, Chichester (1987)

    Google Scholar 

  9. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  10. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  11. Neumaier, A.: Interval Methods for Systems of Equations. PHI Series in Computer Science. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  12. Rall, L.B.: Applications of software for automatic differentiation in numerical computation. In: Alefeld, G., Grigorieff, R.D. (eds.) Fundamentals of Numerical Computation (Computer Oriented Numerical Analysis). Computing Supplement No. 2, pp. 141–156. Springer-Verlag, Heidelberg (1980)

    Google Scholar 

  13. Rall, L.B.: Automatic Differentiation: Techniques and Applications. LNCS, vol. 120. Springer-Verlag, Heidelberg (1981)

    MATH  Google Scholar 

  14. Stauning, O.: Enclosing Solutions of Ordinary Differential Equations. Tech. Report IMM-REP-1996-18, Technical University Of Denmark (1996)

    Google Scholar 

  15. Van Hentenryck, P.: A Constraint Satisfaction Approach to a Circuit Design Problem. Journal of Global Optimization 13, 75–93 (1998)

    Article  MATH  Google Scholar 

  16. Van Hentenryck, P.: A Gentle Introduction to Numerica. Artificial Intelligence 103(1-2), 209–235 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Van Hentenryck, P., Laurent, M., Deville, Y.: Numerica, A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssen, M., Deville, Y., Van Hentenryck, P. (1999). Multistep Filtering Operators for Ordinary Differential Equations. In: Jaffar, J. (eds) Principles and Practice of Constraint Programming – CP’99. CP 1999. Lecture Notes in Computer Science, vol 1713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48085-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48085-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66626-4

  • Online ISBN: 978-3-540-48085-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics