Skip to main content

RNAPII: A Specific Target for the Cell Cycle Kinase Complex

  • Conference paper
Plant Promoters and Transcription Factors

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 20))

Abstract

Transcription in plants, as in other eukaryotes, is catalyzed by three RNA polymerases (RNAPs). Catalytically active forms of RNAPs were first isolated by Roeder and Rutter (1969) and designated as RNAPI(A), II(B) and III(C). RNAPI transcribes rRNA genes, RNAPII synthesizes the precursors of mRNAs and RNAPIII is involved in the transcription of 5S RNA and tRNA genes. In contrast to prokaryotes in which a single RNA polymerase, consisting of ββ’α2 subunits and associated σ factors (Yura and Ishihama 1979; Helmann and Chamberlin 1988), is sufficient for promoter recognition, the assembly of transcriptionally active initiation complexes in eukaryotes requires specific interactions of RNAPs with multiple transcription factors (TFs) and promoter-specific activator proteins. Studies of the regulation of transcription were started by characterization of the subunit composition of RNAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoff N, Hou J, Linzer DIH, Wu B (1993) Regulation of the human hsp70 promoter by p53. Science 259: 84–87

    Article  PubMed  CAS  Google Scholar 

  • Ahearn JM, Bartolomei MS, West M, Cisek LS, Corden JL (1987) Cloning and sequence analysis of the mouse genomic locus encoding the largest subunit of RNA polymerase II. J Biol Chem 262: 10695–10705

    PubMed  CAS  Google Scholar 

  • Allison LA, Ingles CJ (1989) Mutations in RNA polymerase II enhance or suppress mutation in GAL4. Proc Natl Acad Sci USA 86: 2794–2798

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Moyle M, Shales M, Ingles CJ (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599–619

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Wong JK-C, Fitzpatrick VD, Moyle M, Ingles JC (1988) The C-terminal domain of the largest subunit of RNA polymerase of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential funtion. Mol Cell Biol 8: 321–329

    PubMed  CAS  Google Scholar 

  • Andrews BJ, Herskowitz I (1990) Regulation of cell cycle-dependent gene expression in yeast. J Biol Chem 265: 14057–14060

    PubMed  CAS  Google Scholar 

  • Archambault J, Drebot MA, Stone JC, Friesen JD (1992) Isolation and phenotypic analysis of conditional-lethal, linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Gen Genet 232: 408–414

    PubMed  CAS  Google Scholar 

  • Arias JA, Peterson S, Dynan WS (1991) Promoter-dependent phosphorylation of RNA polymerase II by a template-bound kinase. J Biol Chem 266: 8055–8061

    PubMed  CAS  Google Scholar 

  • Arndt KT, Styles CA, Fink GR (1989) A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell 56: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Arnosti DN, Merino A, Reinberg D, Schaffner W (1993) Oct-2 facilitates funtional preinitiation complex assembly and is continuously required at the promoter for multiple rounds of transcription. EMBO J 12: 157–166

    PubMed  CAS  Google Scholar 

  • Azuma Y, Yamagishi M, Ueshima R, Ishihama A (1991) Cloning and sequence determination of the Schizosaccharomyces pombe rpbl gene encoding the largest subunit of RNA polymerase II. Nucleic Acids Res 19: 461–468

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Raychaudhuri P, Nevins JR (1989) Phosphorylation-dependent activation of the adenovirus-inducible E2F transcription factor in a cell-free system. Proc Natl Acad Sci USA 86: 4352–4356

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Raychaudhuri P, Nevins JR (1990) Adenovirus EIA proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for ElA trans-activation. Cell 62: 659–669

    Article  PubMed  CAS  Google Scholar 

  • Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C (1991) Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Bargonetti J, Raynisdóttir I, Friedman PN, Prives C (1992) Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6: 1886–1898

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew B, Dahmus ME, Meares CF (1986) RNA contacts subunits IIo and IIc in HeLa RNA polymerase II transcription complexes. J Biol Chem 261: 14226–14231

    PubMed  CAS  Google Scholar 

  • Bartholomew B, Durkovich D, Kassavetis GA, Geiduschek EP (1993) Orientation and topography of RNA polymerase III in transcription complexes. Mol Cell Biol 13: 942–952

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Corden JL (1987) Localization of an a-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol Cell Biol 7: 586–594

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Halden NF, Cullen CT, Corden JL (1988) Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol Cell Biol 8: 330–339

    PubMed  CAS  Google Scholar 

  • Bell SP, Jantzen H-M, Tijan R (1990) Assembly of alternative multiprotein complexes directs rRNA promoter selectivity. Genes Dev 4: 943–954

    Article  PubMed  CAS  Google Scholar 

  • Bengal E, Flores O, Krauskopf A, Reinberg D, Aloni Y (1991) Role of the mammalian transcription factors IIF, IIS and IIX during elongation by RNA polymerase II. Mol Cell Biol 11: 1195–1206

    Google Scholar 

  • Berger SL, Cress WD, Cress A, Triezenberg SJ, Guarente L (1990) Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61: 1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Bird DM, Riddle DL (1989) Molecular cloning and sequencing of ama-1, the gene encoding the largest subunit of Caenorhabditis elegans RNA polymerase II. Mol Cell Biol 9: 4119–4130

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Friedman PN, Marshak DR, Prives V, Beach D (1990) Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87: 4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM, Löscher B, Eisenman RN (1992) Myc and Max associate in vivo. Genes Dev 6: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Brandl CJ, Struhl K (1989) Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro. Proc Natl Acad Sci USA 86: 2652–2656

    Article  PubMed  CAS  Google Scholar 

  • Braun BR, Bartolomew B, Kassavetis GA, Geiduschek EP (1992) Topography of transcription factor complexes on the Saccharomyces cerevisiae 5S RNA gene. J Mol Biol 228: 1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Bréchot C (1993) Oncogenic activation of cyclin A. Curr Opinion Genet 3: 11–18

    Article  Google Scholar 

  • Brizuela L, Draetta G, Beach D (1987) pl3suci acts in fission yeast cell divisioncycle as a component of the p34cdc2 protein kinase. EMBO J 6: 3507–3514

    Google Scholar 

  • Buratowski S, Sharp PA (1990) Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit. Mol Cell Biol 10: 5562–5564

    PubMed  CAS  Google Scholar 

  • Buratowski S, Zhou H (1992) A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Guarante L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Sopta M, Greenblatt J, Sharp PA (1991) RNA polymerase II-associated proteins are required for a DNA conformation change in the transcription initiation complex. Proc Natl Acad Sci USA 88: 7509–7513

    Article  PubMed  CAS  Google Scholar 

  • Cadena DL, Dahmus ME (1987) Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J Biol Chem 256: 3332–3339

    Google Scholar 

  • Cao L, Faha B, Dembski M, Tsai L-H, Harlow E, Dyson N (1992) Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Carles C, Treich I, Bouet F, Riva M, Sentenac A (1991) Two additional common subunits, ABC10a and ABC1013, are shared by yeast RNA polymerases. J Biol Chem 266: 24092–24096

    PubMed  CAS  Google Scholar 

  • Chao DM, Young RA (1991) Tailored tails and transcription initiation: the carboxyl terminal domain of RNA polymerase II. Gene Expr 1: 1–4

    PubMed  CAS  Google Scholar 

  • Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee W-H (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Chesnut JD, Stephens JH, Dahmus ME (1992) The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit Ifa. J Biol Chem 267: 10500–10506

    PubMed  CAS  Google Scholar 

  • Cho KWY, Khalili K, Zadomeni R, Weinmann R (1985) The gene encoding the large subunit of human RNA polymerase II. J Biol Chem 260: 15204–15210

    PubMed  CAS  Google Scholar 

  • Christmann JL, Dahmus ME (1981) Monoclonal antibody specific for calf thymus RNA polymerase II„ and IIA. J Biol Chem 256: 11798–11803

    PubMed  CAS  Google Scholar 

  • Cisek LJ, Corden JL (1989) Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 339: 679–684

    Article  PubMed  CAS  Google Scholar 

  • Cisek LJ, Corden JL (1991) Purification of protein kinases that phosphorylate the repetitive carboxyl-terminal domain of eukaryotic RNA polymerase II. Methods Enzymol 200: 301–325

    Article  PubMed  CAS  Google Scholar 

  • Clarke PR, Leiss D, Pagano M, Karsenti E (1992) Cyclin A- and cyclin B-dependent protein kinases are regulated by different mechanisms in Xenopus egg extracts. EMBO J 11: 1751–1761

    PubMed  CAS  Google Scholar 

  • Cobrinik D, Dowdy SF, Hinds PW, Miitnacht S, Weinberg RA (1992) The retino- blastoma protein and the regulation of cell cycling. Trends Biochem 17: 312–315

    Article  CAS  Google Scholar 

  • Colbert T, Hahn S (1992) A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev 6: 1940–1949

    Article  PubMed  CAS  Google Scholar 

  • Cornai L, Tanese N, Tijan R (1992) The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68: 965–976

    Article  Google Scholar 

  • Conaway JW, Bradsher JN, Conaway RC (1992) Mechanism of assembly of the RNA polymerase II preinitiation complex. J Biol Chem 267: 10142–10148

    PubMed  CAS  Google Scholar 

  • Corden JL (1990) Tails of RNA polymerase II. Trends Biochem 15: 383–387

    Article  CAS  Google Scholar 

  • Corden JL, Cadena DL, Ahearn JM, Dahmus ME (1985) A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci USA 82: 7934–7938

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Strubin M, Ponticelli AS, Struhl K (1991) Functional differences between yeast and human TFIID ara localized to the highly conserved region. Cell 65: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Coulter DE, Greenleaf AL (1985) A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro. J Biol Chem 260: 13190–13198

    PubMed  CAS  Google Scholar 

  • Courchesne WE, Kunisawa R, Thorner J (1989) A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58: 1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Crerar MM, Leather R, David E, Pearson ML (1983) Myogenic differentiation in L6 rat myoblasts: evidence for pleiotropic effects on myogenesis by RNA polymerase II mutations to a-amanitin resistance. Mol Cell Biol 3: 946–955

    PubMed  CAS  Google Scholar 

  • Cross FR, Tinkelenberg AH (1991) A potential positive feed-back loop controlling CLNI and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875 —883

    Google Scholar 

  • Dahmus ME (1981) Phosphorylation of eukaryotic DNA-dependent RNA polymerases. J Biol Chem 256: 3332–3339

    PubMed  CAS  Google Scholar 

  • Dahmus ME (1983) Structural relationship between the large subunits of calf thymus RNA polymerase II. J Biol Chem 258: 3956–3960

    PubMed  CAS  Google Scholar 

  • Dahmus ME, Kedinger C (1983) Transcription of adenovirus-2 major late promoter inhibited by monoclonal antibody against RNA polymerases II„ and IIA. J Biol Chem 258: 2303–2307

    PubMed  CAS  Google Scholar 

  • Dalton S (1992) Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804

    PubMed  CAS  Google Scholar 

  • Darst SE, Edwards AM, Kubalek EW, Kornberg RD (1991) Three-dimensional structure of yeast RNA polymerase II at 16A resolution. Cell 66: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR (1992) A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell 68: 167–176

    Article  PubMed  CAS  Google Scholar 

  • Dietrich MA, Prenger JP, Guilfoyle TJ (1990) Analysis of the genes encoding the largest subunit of RNA polymerase II in Arabidopsis and soybean. Plant Mol Biol 15: 207–223

    Article  PubMed  CAS  Google Scholar 

  • Doonan JH (1991) Cycling plant cells. Plant J 1: 129–132

    Article  Google Scholar 

  • Draetta G (1990) Cell cycle control in eukaryotes: molecular mechanism of cdc2 activation. Trends Biochem 15: 378–383

    Article  CAS  Google Scholar 

  • Ducommun B, Brambilla P, Draetta G (1991) Mutations at sites involved in SUC1 binding inactivate Cdc2. Mol Cell Biol 11: 6177–6184

    PubMed  CAS  Google Scholar 

  • D’Urso G, Marracino RL, Marshak DR, Roberts JM (1990) Cell cycle control of DNA replication by a homologue from human cells of the p34`dc2 protein kinase. Science 250: 786–791

    Article  PubMed  Google Scholar 

  • Dutta A, Stillman B (1992) CDC2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11: 2189–2199

    Google Scholar 

  • Dutta A, Din S, Brill SJ, Stillman B (1991) Phosphorylation of replication protein A: a role for cdc2 kinase in G1/S regulation. Cold Spring Harbor Symp Quant Biol LVI: 315–324

    Google Scholar 

  • Dvir A, Peterson SR, Knuth MW, Lu H, Dynan WS (1992) Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc Natl Acad Sci USA 89: 11920–11924

    Article  PubMed  CAS  Google Scholar 

  • Dynlacht BD, Hoey T, Tijan R (1991) Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66: 563–576

    Article  PubMed  CAS  Google Scholar 

  • Elion A, Brill JA, Fink GR (1991) FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci USA 88: 9392–9396

    Article  PubMed  CAS  Google Scholar 

  • Enoch T, Nurse P (1991) Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell 65: 921–923

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Littlewood TD (1993) The role of c-myc in cell growth. Curr Opinion Genet Dev 3: 44–49

    Article  CAS  Google Scholar 

  • Evers R, Hammer A, Köck J, Jess W, Borst P, Mémet S, Cornelissen CA (1989a) Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell 56: 585–597

    Google Scholar 

  • Evers R, Hammer A, Cornelissen WCA (1989b) Unusual C-terminal domain of the largest subunit of RNA polymerase II of Crithidia fasciculata. Nucleic Acids Res 17: 3403–3413

    Article  PubMed  CAS  Google Scholar 

  • Ewen ME, Xing Y, Lawrance BJ, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66: 1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Ewen ME, Faha B, Harlow E, Livingston DM (1992) Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins. Science 255: 85–87

    Article  PubMed  CAS  Google Scholar 

  • Faha B, Ewen ME, Tsai L-H, Livingston DM, Harlow E (1992) Interaction between human cyclin A and adenovirus E1A-associated p107 protein. Science 255: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C (1992) Wild-type p53 activates transcription in vitro. Nature 358: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Feaver WJ, Gileadi O, Li Y, Kornberg RD (1991) CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67: 1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Feiler HS, Jacobs TW (1991) Cloning of the pea cdc2 homologue by efficient immunological screening of PCR products. Plant Mol Biol 17: 321–333

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Sabaria MJ, Sutton A, Zhong T, Arndt KT (1992) SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Genes Dev 6: 2417–2428

    Article  Google Scholar 

  • Ferreira PCG, Hemerly AS, Villarroel R, Van Montagu M, Inzé D (1991) The Arabidopsis functional homology of the p34`dc2 protein kinase. Plant Cell 3: 531–540

    PubMed  CAS  Google Scholar 

  • Finkelstein A, Kostrub KF, Li J, Chavez DP, Wang BQ, Fang SM, Greenblatt J, Burton ZF (1992) A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Nature 355: 464–467

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332: 853–856

    Article  PubMed  CAS  Google Scholar 

  • Flanagan PM, Kelleher RJ, Sayre MH, Tschochner H, Kornberg RG (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436–438

    Article  PubMed  CAS  Google Scholar 

  • Flores O, Lu H, Killeen M, Greenblatt J, Burton ZF, Reinberg D (1991) The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc Natl Acad Sci USA 88: 9999–10003

    Article  PubMed  CAS  Google Scholar 

  • Flores O, Lu H, Reinberg D (1992) Factors involved in specific transcription by mammalian RNA polymerase II. J Biol Chem 267: 2786–2793

    PubMed  CAS  Google Scholar 

  • Fotedar R, Roberts JM (1992) Cell cycle regulated phosphorylation of RPA-32 occurs within the replication complex. EMBO J 11: 2177–2187

    PubMed  CAS  Google Scholar 

  • Gabrielsen OS, Sentenac A (1991) RNA polymerase III(C) and its transcription factors. Trends Biochem 16: 412–416

    Article  CAS  Google Scholar 

  • Gasch A, Hoffmann A, Horikoshi M, Roeder RG, Chua N-H (1990) Arabidopsis thaliana contains two genes for TFIID. Nature 346: 390–394

    Google Scholar 

  • Geiduschek EP, Tocchini-Valentini GP (1988) Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914

    Article  PubMed  CAS  Google Scholar 

  • Gill G, Tijan R (1991) A highly specific conserved domain of TFIID displays species specificity in vivo. Cell 65: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Goodrich DW, Wang NP, Quian Y-W, Lee EY-HP, Lee W-H (1991) The retino-blastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67: 293–302

    Article  PubMed  CAS  Google Scholar 

  • Gordon CB, Campbell JL (1991) A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase a in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88: 6058–6062

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131–142

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt J (1991a) RNA polymerase-associated transcription factors. Trends Biochem 16: 408–412

    Article  CAS  Google Scholar 

  • Greenblatt J (1991b) Roles of TFIID in transcriptional initiation by RNA polymerase H. Cell 66: 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf AL (1983) Amanitin-resistant RNA polymerase II mutations are in the enzyme’s largest subunit. J Biol Chem 258: 13403–13406

    PubMed  CAS  Google Scholar 

  • Greenleaf AL, Borsett LM, Jimachello PF, Coulter DE (1979) a-Amanitin resistant D. melanogaster with an altered RNA polymerase II. Cell 18: 613–622

    Google Scholar 

  • Greenleaf AL, Weeks JR, Voelker RA, Ohnishi S, Dickson B (1980) Genetic and biochemical characterization of mutants at an RNA polymerase II locus in D. melanogaster. Cell 21: 785–792

    Article  PubMed  CAS  Google Scholar 

  • Guarante L, Bermingham-McDonogh O (1992) Conservation and evolution of transcriptional mechanisms in eukaryotes. Trends Genet 8: 27–32

    Article  Google Scholar 

  • Guilfoyle TJ (1983) DNA-dependent RNA polymerases of plants and lower eukaryotes. In: Samson TJ (ed) Biochemistry and molecular biology of the cell nucleus, vol II. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Guilfoyle TJ (1989) A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase II. Plant Cell 1: 827–836

    PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Dietrich MA (1987) Plant RNA polymerases: structures, regulation and genes. In: Bruening G, Harada J, Kosuge T, Hollaender A (eds) Tailoring genes for crop improvement. Plenum Press, New York, pp 87–100

    Chapter  Google Scholar 

  • Guilfoyle TJ, Hagen G, Malcolm S (1984) Immunological studies on plant DNA-dependent RNA polymerases with antibodies raised against individual subunits. J Biol Chem 259: 640–648

    PubMed  CAS  Google Scholar 

  • Gunderson Si, Knuth MW, Burgess RR (1990) The Ul snRNA promoter correctly initiates transcription and is activated by PSE1. Genes Dev 4: 2048–2060

    Article  PubMed  CAS  Google Scholar 

  • Ha I, Lane WS, Reinberg D (1991) Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352: 689–695

    Article  PubMed  CAS  Google Scholar 

  • Haaß MM, Feix G (1992) Two different cDNAs encoding TFIID proteins of maize. FEBS Lett 301: 294–297

    Article  PubMed  Google Scholar 

  • Hamel PA, Gallie BL, Phillips RA (1992) The retinoblastoma protein and cell cycle regulation. Trends Genet 8: 180–185

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Check-points: controls that ensure the order of cell cycle events. Science 246: 629–634

    Article  PubMed  CAS  Google Scholar 

  • Hata S (1991) cDNA cloning on a novel cdc2+/CDC28-related protein kinase from rice. FEBS Lett 279:149–152

    Google Scholar 

  • Hata S, Kouchi H, Suzuka I, Ishii T (1991) Isolation and characterization of cDNA clones for plant cyclins. EMBO J 10: 2681–2688

    PubMed  CAS  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57: 839–872

    Article  PubMed  CAS  Google Scholar 

  • Hemerly A, Bergounioux C, Van Montagu M, Inzé D (1992) Genes regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 3295–3299

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Lipp M, Nevins JR (1989) E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86: 3594–3598

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Himmelfarb HJ, Simpson EM, Friesen JD (1987) Isolation and characterization of temperature-sensitive RNA polymerase II mutants of Saccharomyces cerevisiae. Mol Cell Biol 7: 2155–2164

    PubMed  CAS  Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Imajuku Y, Anai T, Matsui M, Oka A (1991) Identification of two cellcycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene 105: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Hirt H, Pay A, Györgyey J, Bake, L, Németh K, Bögre L, Schweyen RJ, HeberleBors E, Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous tp p34`do2 Proc Natl Acad Sci USA 88: 1636–1640

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra MF, Demaggio AJ, Dhillon N (1991) Genetically identified protein kinases in yeast II: DNA metabolism and meiosis. Trends Genet 7: 293–297

    Google Scholar 

  • Hollingsworth RE, Carmel EH, Lee W-H (1993) Retinoblastoma protein and the cell cycle. Curr Opinion Genet Dev 3: 55–62

    Article  CAS  Google Scholar 

  • Horikoshi M, Carey MF, Kakidani H, Roeder RG (1988a) Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIIDpromoter interactions. Cell 54: 665–669

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi M, Hai T, Lin Y-S, Green MR, Roeder RG (1988b) Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54: 1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Korikoshi N, Maguire K, Kralli A, Maldonado E, Reinberg D, Weinmann R (1991) Direct interaction between adenovirus Ela protein and the TATA box binding transcription factors II D. Proc Natl Acad Sci USA 88: 5124–5128

    Article  Google Scholar 

  • Hunter T (1993) Oncogenes and cell proliferation. Curr Opinions Genet Dev 3:1–4 Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    Google Scholar 

  • Ingles CJ (1978) Temperature-sensitive RNA polymerase II mutations in Chinese hamster ovary cells. Proc Natl Acad Sci USA 75: 405–409

    Article  PubMed  CAS  Google Scholar 

  • Ingles JC, Himmelfarb HJ, Shales M, Greenleaf AL, Friesen JD (1984) Identification, molecular cloning, and mutagenesis of Saccharomyces cerevisiae RNA polymerase genes. Proc Natl Acad Sci USA 81: 2157–2161

    Article  PubMed  CAS  Google Scholar 

  • Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D (1992) DR1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70: 477–489

    Article  PubMed  CAS  Google Scholar 

  • Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent transcript in a 3’—5’ direction in the presence of elongation factor SII. Genes Dev 6: 1342–1356

    Article  PubMed  CAS  Google Scholar 

  • Jantzen M-H, Admon A, Bell SP, Tijan R (1990) Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344: 830–836

    Article  PubMed  CAS  Google Scholar 

  • Jantzen H-M, Chow AM, King DS, Tijan R (1992) Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSLI to mediate transcription. Genes Dev 6: 1959–1963

    Article  Google Scholar 

  • John PCL, Sek FJ, Lee MG (1989) A homolog of the cell cycle control protein p34edc2 participates in the division cycle of Chlamydomonas and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1: 1185–1193

    PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, Lowndes NF (1992) Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res 20: 2403–2410

    Article  PubMed  CAS  Google Scholar 

  • Jokerst RS, Weeks JR, Zehring WA, Greenleaf AL (1989) Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Mol Gen Genet 215: 266–275

    Article  PubMed  CAS  Google Scholar 

  • Kakidani H, Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Kassavetis GA, Joazeiro CAP, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA (1992) The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71: 1055–1064

    Google Scholar 

  • Kastan MB, Zhan Q, EI-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ (1992) A mammalian cell cycle check-point pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 71: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Katagiri F, Yamazaki K, Horikoshi M, Roeder RG, Chua N-H (1990) A plant DNA-binding protein increases the number of active preinitiation complexes in a human in vitro transcription system. Genes Dev 4: 1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Kelleher III RJ, Flanagan PM, Kornberg RD (1990) A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Killeen MT, Greenblatt JF (1992) The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Mol Cell Biol 12: 30–37

    PubMed  CAS  Google Scholar 

  • Killeen M, Coulombe B, Greenblatt J (1992) Recombinant TBP, transcription factor IIB, and RAP30 are sufficient for promoter recognition by mammalian RNA polymerase II. J Biol Chem 267: 9463–9466

    PubMed  CAS  Google Scholar 

  • Kim W-Y, Dahmus ME (1986) Immunological analysis of mammalian RNA polymerase II subspecies. J Biol Chem 261: 1419–1425

    Google Scholar 

  • Kim W-Y, Dahmus ME (1989) The major late promoter of adenovirus-2 is accurately transcribed by RNA polymerases II0, IIA and IIB. J Biol Chem 264: 3169–3176

    Google Scholar 

  • Knuth MW, Gunderson SI, Thompson NE, Strasheim LA, Burgess RR (1990) Purification and characterization of proximal sequence element-binding protein 1, a transcription activating protein related to Ku and TREF that binds to proximal sequence element of the human Ul promoter. J Biol Chem 265: 17911–17920

    PubMed  CAS  Google Scholar 

  • Koleske A, Buratowski S, Nonet M, Young RA (1992) A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69: 883–894

    Article  PubMed  CAS  Google Scholar 

  • Kolodziej PA, Woychik N, Liao S-N, Young RA (1990) RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol 10: 1915–1920

    PubMed  CAS  Google Scholar 

  • Kruger W, Herskowitz I (1991) A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMGI. Mol Cell Biol 11: 4135–4146

    PubMed  CAS  Google Scholar 

  • Ku D-H, Wen S-C, Engelhard A, Nicolaides NC, Lipson KE, Marino TA, Calabretta B (1993) c-myb transactivates cdc2 expression via Myb binding sites in the 5’ flanking region of the human cdc2 gene. J Biol Chem 268: 2255–2259

    Google Scholar 

  • Lai L-S, Cleary MA, Herr W (1992) A single amino acid exchange transfers VP16induced positive control from the Oct-1 to the Oct-2 homeo domain. Genes Dev 6: 2058–2065

    Article  PubMed  CAS  Google Scholar 

  • Laurent BC, Carlson M (1992) Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. Genes Dev 6: 1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Laybourn PJ, Dahmus ME (1989) Transcription dependent structural changes in the C-terminal domain of mammalian RNA polymerase subunit IIa/o. J Biol Chem 264: 6693–6698

    PubMed  CAS  Google Scholar 

  • Lee DK, Dejong J, Hashimoto S, Horikoshi M, Roeder RG (1992) TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol Cell Biol 12: 5189–5196

    PubMed  CAS  Google Scholar 

  • Lee JM, Greenleaf AL (1989) A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc Natl Acad Sci USA 86: 3624–2628

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Kao C, Bryant GO, Liu X, Berk AJ (1991) Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Lees E, Faha B, Dulic V, Reed SI, Harlow E (1992) Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner. Genes Dev 6: 1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Lew DL, Marini NJ, Reed SI (1992) Different cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast S. cerevisiae. Cell 69: 317–327

    Article  PubMed  CAS  Google Scholar 

  • Lewis MK, Burgess RR (1982) Eukaryotic RNA polymerases. In: Boyer PD (ed) The enzymes, vol XV. Academic Press, New York, pp 109–153

    Google Scholar 

  • Li W-O, Bzik DJ, Gu H, Tanaka M, Fox BA, Inselburg J (1989) An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res 17: 9621–9636

    Article  PubMed  CAS  Google Scholar 

  • Liao S-M, Taylor ICA, Kingston RE, Young RA (1991) RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro. Genes Dev 5: 2431–2440

    Article  PubMed  CAS  Google Scholar 

  • Liebermann PM, Berk AJ (1991) The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5: 2441–2454

    Article  Google Scholar 

  • Lin Y-S, Green MR (1991) Mechanism of action of an acidic transcription activator in vitro. Cell 64: 971–981

    Article  PubMed  CAS  Google Scholar 

  • Lobo SM, Tanaka M, Sullivan ML, Hernandez N (1992) A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 71: 1029–1040

    Article  PubMed  CAS  Google Scholar 

  • López-De-León A, Librizzi M, Puglia K, Willis IM (1992) PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71: 211–220

    Google Scholar 

  • Lowndes NF, Johnston AL, Johnston LI-I (1991) Coordination of expression of DNA synthesis genes in budding yeast by a cell-cycle regulated trans-factor. Nature 350: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Lowndes NF, Johnston AL, Breeden L, Johnston LH (1992) SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature 357: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Flores O, Weinmann R, Reinberg D (1991) The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA 88: 10004–10008

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zawel L, Fisher L, Egly J-M, Reinberg D (1992) Human general transcription factor IIH phyosphorylates the C-terminal domain of RNA polymerase II. Nature 358: 641–645

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Hisatake K, Sumimoto H, Horikoshi M, Roeder RG (1991) Sequence of general transcription factor TFIIB and relationship to other initiation factors. Proc Natl Acad Sci USA 88: 9553–9557

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Okamura S, Yound RA (1990) Genetic exploration of interactive domains in RNA polymerase II subunits. Mol Cell Biol 10: 1908–1914

    PubMed  CAS  Google Scholar 

  • Matsushima N, Creutz CE, Kretsinger RH (1990) Polyproline, I3-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synatophysin, synexin, gliadin, RNA polymerase II, hordein and glutein. Proteins 7:125 —155

    Google Scholar 

  • Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor 1 regulates novel cyclins during the GI phase of the cell cycle. Cell 65: 701–713

    Article  PubMed  CAS  Google Scholar 

  • Matshushime H, Ewen ME, Strom DK, Kato J-Y, Hanks SK, Roussel MF, Sherr CJ (1992) Identification and properties of an atypical catalytic subunit (p34~’sK- /cdk4) for mammalian D type G1 cyclins. Cell 71: 323–334

    Article  Google Scholar 

  • Meisterernst M, Roeder RG (1991) Family of proteins that interact with TFIID and regulate promoter activity. Cell 67: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Meisterernst M, Horikoshi M, Roeder RG (1990) Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc Natl Acad Sci USA 87: 9153–9157

    Article  PubMed  CAS  Google Scholar 

  • Meisterernst M, Roy AL, Lieu HM, Roeder RG (1991) Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66: 981–993

    Article  PubMed  CAS  Google Scholar 

  • Mémet S, Saurin W, Sentenac A (1988) RNA polymerases B and C are more closely related to each other that to RNA polymerase A. J Biol Chem 263: 10048–10051

    PubMed  Google Scholar 

  • Merrill GF, Morgan BA, Lowndes NF, Johnston LH (1992) DNA synthesis control in yeast: an evolutionary conserved mechanism for regulating DNA synthesis genes? BioEssays 14: 823–830

    Article  PubMed  CAS  Google Scholar 

  • Mietz JA, Unger T, Huibregtse JM, Howley PM (1992) The transcriptional trans-activation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 11: 5013–5020

    PubMed  CAS  Google Scholar 

  • Milner J, Cook A, Mason J (1990) p53 is associated with p34`d`2 in transformed cells. EMBO J 9: 2885–2889

    Google Scholar 

  • Mitchell PJ, Tijan R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. Science 245: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Moran E (1993) DNA tumor virus transforming proteins and the cell cycle. Curr Opinion Genet Dev 3: 63–70

    Article  CAS  Google Scholar 

  • Mortin MA (1990) Use of second-site suppressor mutations in Drosophila to identify components of the transcriptional machinery. Proc Natl Acad Sci USA 87: 4864–4868

    Article  PubMed  CAS  Google Scholar 

  • Motokura T, Arnold A (1993) Cyclin D and oncogenesis. Curr Opinion Genet Dev 3: 5–10

    Article  CAS  Google Scholar 

  • Moyle M, Lee JS, Anderson WF, Ingles JC (1989) The C-terminal domain of the largest subunit of RNA polymerase II and transcription initiation. Mol Cell Biol 9: 5750–5753

    PubMed  CAS  Google Scholar 

  • Mudryj M, Hiebert SW, Nevins JR (1990) A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. EMBO J 9: 2179–2184

    PubMed  CAS  Google Scholar 

  • Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246: 614–621

    Article  PubMed  CAS  Google Scholar 

  • Nasheuer H-P, Moore A, Wahl AF, Wang TS-F (1991) Cell cycle-dependent phos-phorylation of human DNA polymerase a. J Biol Chem 266: 7893–7903

    PubMed  CAS  Google Scholar 

  • Nasmyth K, Dirick L (1991) The role of SWI4 and SWIG in the activity of Gl cyclins in yeast. Cell 66: 995–1013

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Schell J, Koncz C (1990) Homologous domains of the largest subunit of eukaryotic RNA polymerase II are conserved in plants. Mol Gen Genet 223: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Nigro JM, Sikorski R, Reed SI, Vogelstein B (1992) Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Mol Cell Biol 12: 1357–1365

    PubMed  CAS  Google Scholar 

  • Nikolov DB, Hu S-H, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua N-H, Roeder RG, Burley SK (1992) Crystal structure of TFIID TATA-box binding protein. Nature 360: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Nitschke K, Fleig U, Schell J, Palme K (1992) Complementation of the cs dis2–11 cell cycle mutant of Schizosaccharomyces pombe by a protein phosphatase from Arabidopsis thaliana. EMBO J 11: 1327–1333

    PubMed  CAS  Google Scholar 

  • Nonet ML, Young RA (1989) Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715–724

    PubMed  CAS  Google Scholar 

  • Nonet M, Scafe C, Sexton J, Young R (1987a) Eucaryotic RNA polymerase con-ditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol 7: 1602–1611

    PubMed  CAS  Google Scholar 

  • Nonet M, Sweetser D, Young RA (1987b) Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50: 909–915

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Andrews BJ, Herskowitz I (1991) Transcriptional activation of CLNI, CLN2, and a putative new GI cyclin (HCS26) by SWI4, a positive regulator of Gl-specific transcription. Cell 66: 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma Y, Sumimoto H, Horikosho M, Roeder RG (1990) Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. Proc Natl Acad Sci USA 87: 9163–9167

    Article  PubMed  CAS  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992a) Cyclin A is required at two points in the human cell cycle. EMBO J 11: 961–971

    PubMed  CAS  Google Scholar 

  • Pagano M, Draetta G, Jansen-Dürr P (1992b) Association of cdk2 kinase with the transcription factor E2F during S phase. Science 255: 1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Payne JM, Dahmus ME (1993) Partial purification and characterization of two distinct protein kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase subunit IIa. J Biol Chem 268: 80–87

    PubMed  CAS  Google Scholar 

  • Payne JM, Laybourn PJ, Dahmus ME (1989) The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyterminal domain of subunit IIa. J Biol Chem 264: 19621–19629

    PubMed  CAS  Google Scholar 

  • Pearson BE, Nasheuer H-P, Wang TS-F (1991) Human DNA polymerase a gene: sequences controlling expression in cycling and serum-stimulated cells. Mol Cell Biol 11: 2081–2095

    PubMed  CAS  Google Scholar 

  • Perry ME, Levine AL (1993) Tumor-suppressor p53 and the cell cycle. Curr Opinion Genet Dev 3: 50–54

    Article  CAS  Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWIJ, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Kruger W, Herskowitz I (1991) A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Peterson SR, Dvir A, Anderson CW, Dynan WS (1992) DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev 6: 426–438

    Article  PubMed  CAS  Google Scholar 

  • Pinto I, Ware DE, Hampsey M (1992) The yeast SUAI gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68: 977–988

    Article  PubMed  CAS  Google Scholar 

  • Pitto L, Schiavo L, Terzi M (1985) a-Amanitin resistance is developmentally regulated in carrot. Proc Natl Acad Sci USA 82: 2799–2803

    Google Scholar 

  • Ptashne M, Gann AAF (1990) Activators and targets. Nature 346: 329–331

    Article  PubMed  CAS  Google Scholar 

  • Pugh BF, Tijan R (1990) Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Pühler G, Leffers H, Gropp F, Palm P, Klenk H-P, Lottspeich F, Garrett RA, Zillig W (1989) Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci USA 86: 4569–4573

    Article  PubMed  Google Scholar 

  • Reed SI (1991) GI-specific cyclins: in search of an S-phase-promoting factor. Trends Genet 7: 95–99

    PubMed  CAS  Google Scholar 

  • Reeder RH (1990) rRNA synthesis in the nucleolus. Trends Genet 6:390–395 Reeves WH, Sthoeger ZM (1989) Molecular cloning of cDNA encoding the p70 ( Ku) lupus autoantigen. J Biol Chem 264: 5047–5052

    Google Scholar 

  • Rice GA, Kane CM, Chamberlin MJ (1991) Footprinting analysis of mammalian RNA polymerase II along its transcript: an alternative view of transcription elongation. Proc Natl Acad Sci USA 88: 4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Rigby PW (1993) Three in one and one in three: it all depends on TBP. Cell 72: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Riva M, Mémet S, Micouin J-Y, Huet J, Treich I, Dassa J, Young R, Buhler J-M, Sentenac A, Fromageot P (1986) Isolation of structural genes for yeast RNA polymerases by immunological screening. Proc Natl Acad Sci USA 83: 1554–1558

    Article  PubMed  CAS  Google Scholar 

  • Riva M, Shäffner AR, Sentenac A, Hartmann GR, Mustaev AA, Zaychikov EF, Grachev MA (1987) Active site labeling of the RNA polymerase A, B and C from yeast. J Biol Chem 262: 14377–14380

    Google Scholar 

  • Robbins PD, Horowitz JM, Mulligan RC (1990) Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346: 668–671

    Article  PubMed  CAS  Google Scholar 

  • Roeder RG (1991) The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem 16: 402–408

    Article  CAS  Google Scholar 

  • Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent DNA polymerases in eukaryotic organisms. Nature 224: 234–237

    Article  PubMed  CAS  Google Scholar 

  • Rorth P, Montell DJ (1992) Drosophila C/EBP: a tissue-specific DNA-binding protein required for embryonic development. Genes Dev 6: 2299–2311

    Google Scholar 

  • Rustgi AK, Dyson N, Bernards R (1991) Amino-terminal domains of c-Myc and Nmyc proteins mediate binding to the retinoblastoma gene product. Nature 352: 541–544

    Article  PubMed  CAS  Google Scholar 

  • Sadowski I, Niedbala D, Wood K, Ptashne M (1991) GAL4 is phosphorylated as a consequence of transcriptional activation. Proc Natl Acad Sci USA 88: 10510–10514

    Article  PubMed  CAS  Google Scholar 

  • Sawadogo M, Sentenac A (1990) RNA polymerase B(II) and general transcription factors. Annu Rev Biochem 59: 711–754

    Article  PubMed  CAS  Google Scholar 

  • Sayre MH, Tschochner H, Kornberg RD (1992a) Reconstruction of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem 267: 23376–23382

    PubMed  CAS  Google Scholar 

  • Sayre MH, Tschochner H, Kornberg RD (1992b) Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. J Biol Chem 267: 23383–23387

    PubMed  CAS  Google Scholar 

  • Scafe C, Martin C, Nonet M, Podos S, Okamura S, Young RA (1990) Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol Cell Biol 10: 1270–1275

    PubMed  CAS  Google Scholar 

  • Schreck R, Carey MF, Grummt I (1989) Transcriptional enhancement by upstream activators is brought about by different molecular mechanisms for class I and II RNA polymerase genes. EMBO J 8: 3011–3017

    PubMed  CAS  Google Scholar 

  • Schultz MC, Reeder RH, Hahn S (1992) Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II and III promoters. Cell 69: 697–702

    Google Scholar 

  • Searles L, Jokerst RS, Bingham PM, Voelker RA, Greenleaf AL (1982) Molecular cloning of sequences from a Drosophila RNA polymerase II locus by P element transposon tagging. Cell 31: 585–592

    Article  PubMed  CAS  Google Scholar 

  • Seipel K, Georgiev O, Schaffner W (1992) Different activation domains stimulate transcription from remote (“enhancer”) and proximal (“promoter”) positions. EMBO J 11: 4961–4968

    PubMed  CAS  Google Scholar 

  • Sentenac A (1985) Eukaryotic RNA polymerases. CRC Crit Rev Biochem 18: 31–90

    Article  PubMed  CAS  Google Scholar 

  • Serizawa H, Conaway RC, Conaway JW (1992) A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor 8 from rat liver. Proc Natl Acad Sci USA 89: 7476–7480

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1992) TATA-binding protein is a classless factor. Cell 68:819–821 Shermoen AW, O’Farell PH (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67: 303–310

    Google Scholar 

  • Shi Y, Seto E, Chang L-S, Shenk T (1991) Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67: 377–388

    Article  PubMed  CAS  Google Scholar 

  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM; Chittenden T (1992) The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Simon CM, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52: 723–729

    Article  PubMed  CAS  Google Scholar 

  • Smale S, Schmidt MC, Berk AJ, Baltimore D (1990) Transcriptional activation by Spl as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 87: 4509–4513

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Levin JR, Ingles JC, Agabian N (1989) In Trypanosomes the homolog of the largest subunit of RNA polymerase II is encoded by two genes and has a highly unusual C-terminal domain structure. Cell 56: 815–827

    Article  PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Mougey EB (1991) News from the nucleolus. Trends Biochem 16: 58–62

    Article  Google Scholar 

  • Sorger PK, Murray AW (1992) S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc2 Nature 355: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Sprague GF Jr (1991) Signal transduction in yeast mating: receptors, transcription factors and the kinase connections. Trends Genet 7: 393–397

    Article  PubMed  CAS  Google Scholar 

  • Stone N, Reinberg D (1992) Protein kinases from Aspergillus nidulans that phosphorylate the carboxyl-terminal domain of the largest subunit of RNA polymerase II. J Biol Chem 267: 6353–6360

    PubMed  CAS  Google Scholar 

  • Stringer KF, Ingles J, Greenblatt J (1990) Direct and selective binding of an acidic activation domain to the TATA-box factor TFIID. Nature 345: 783–786

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Ohkuma Y, Yamamoto T, Horikoshi M, Roeder RG (1990) Factors involved in specific transcription by mammalian RNA polymerase II: identification of general transcription factor TFIIG. Proc Natl Acad Sci USA 87: 9158–9162

    Article  PubMed  CAS  Google Scholar 

  • Surana U, Robitsch H, Prince C, Schuster T, Fitch I, Futcher BA, Nasmyth K (1991) The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65: 145–161

    Article  PubMed  CAS  Google Scholar 

  • Sweetser D, Nodet M, Young RA (1987) Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA 84: 1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Szentirmay MN, Sawadogo M (1991) Transcription factor requirement for multiple rounds of initiation by human RNA polymerase II. Proc Natl Acad Sci USA 88: 10691–10695

    Article  PubMed  CAS  Google Scholar 

  • Taggart AKP, Fischer TS, Pugh BF (1992) The TATA-binding protein and associated factors are components of PolIII transcription factor TFIIIB. Cell 71: 1015–1028

    Article  PubMed  CAS  Google Scholar 

  • Takada R, Nakatani Y, Hoffmann A, Kokubo T, Hasegawa T, Roeder RG, Hirokoshi M (1992) Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA box-binding protein ( TFIIDt ). Proc Natl Acad Sci USA 89: 11809–11813

    Google Scholar 

  • Tanaka M, Lai J-S, Herr W (1992) Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter. Cell 68: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Theunissen O, Rudt F, Guddat U, Mentzel H, Pieier T (1992) RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71: 679–690

    Article  PubMed  CAS  Google Scholar 

  • Thompson NE, Steinberg TH, Aronson DB, Burgess RR (1989) Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J Biol Chem 264: 11511–11520

    PubMed  CAS  Google Scholar 

  • Tschochner H, Sayre MH, Flanagan PM, Feaver WJ, Kornberg RD (1992) Yeast RNA polymerase II initiation factor e: isolation and identification as the functional counterpart of human transcription factor IIB. J Biol Chem 89: 11292–11296

    CAS  Google Scholar 

  • Tsuchiya E, Uno M, Kiguchi A, Masuoka K, Kanemori Y, Okabe S, Mikayawa T (1992) The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J 11:4017 —4026

    Google Scholar 

  • Tyers M, Tokiwa G, Nash R, Futcher B (1992) The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 11: 1773–1784

    PubMed  CAS  Google Scholar 

  • Umek RM, Friedman AD, McKnight SL (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Usheva A, Maldonado E, Goldring A, Lu H, Houbavi C, Reinberg D, Aloni Y (1992) Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69: 871–881

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Carey M, Gralla JD (1992a) Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255: 450–453

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Gralla JD, Carey M (1992b) The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev 6: 1716–1727

    Article  PubMed  CAS  Google Scholar 

  • Webster N, Jin JR, Green S, Hollis M, Chambon P (1988) The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Weintraub SJ, Prater CA, Dean DC (1992) Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261

    Article  PubMed  CAS  Google Scholar 

  • White RJ, Jackson SP (1992a) The TATA-binding protein: a central role in tran-scription by RNA polymerase I, II and III. Trends Genet 8: 284–288

    Google Scholar 

  • White RJ, Jackson SP (1992b) Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. Cell 71: 1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Winston F, Carlson M (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8: 387–391

    PubMed  CAS  Google Scholar 

  • Woychik NA, Young RA (1990) RNA polymerase II: subunit structure and function. Trends Biochem 15: 347–351

    Article  CAS  Google Scholar 

  • Woychik NA, Liao S-M, Kolodziej PA, Young RA (1990) Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev 4: 313–323

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Yang C-L, Chang L-S, Zhang P, Ha H, Zhu L, Toomey NL, Lee MYWT (1992) Molecular cloning of the cDNA for the catalytic subunit of human DNA polymerase 6. Nucleic Acids Res 20: 735–745

    Article  PubMed  CAS  Google Scholar 

  • Yano R, Nomura M (1991) Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol Cell Biol 11: 754–764

    PubMed  CAS  Google Scholar 

  • Yoon H-J, Campbell JL (1991) The CDC7 protein of Saccharomyces cerevisiae is a phosphoprotein that contains protein kinase activity. Proc Natl Acad Sci USA 88: 3574–3578

    Article  PubMed  CAS  Google Scholar 

  • Young RA (1991) RNA polymerase II. Annu Rev Biochem 60: 689–715

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Davies RW (1983) Yeast RNA polymerase II genes: isolation with antibody probes. Science 222: 778–782

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Ishihama A (1979) Genetics of bacterial RNA polymerases. Annu Rev Genet 13: 59–97

    Article  PubMed  CAS  Google Scholar 

  • Zambetti GP, Bargonetti J, Walker K, Prives C, Levine AJ (1992) Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev 6: 1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Zehring WA, Greenleaf AL (1990) The carboxyl-terminal repeat domain of RNA polymerase II is not required for transcription factor Spl to function in vitro. J Biol Chem 265: 8351–8353

    PubMed  CAS  Google Scholar 

  • Zehring WA, Lee JM, Weeks JR, Jokerst RS, Greenleaf AL (1988) The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci USA 85: 3698–3702

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Corden JL (1991a) Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 266: 2290–2296

    PubMed  CAS  Google Scholar 

  • Zhang J, Corden JL (1991b) Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 266: 2297–2302

    PubMed  CAS  Google Scholar 

  • Zhou QZ, Liebermann PM, Boyer TG, Berk AJ (1992) Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev 6: 1964–1974

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bakó, L., Nuotio, S., Dudits, D., Schell, J., Koncz, C. (1994). RNAPII: A Specific Target for the Cell Cycle Kinase Complex. In: Nover, L. (eds) Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48037-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48037-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22304-8

  • Online ISBN: 978-3-540-48037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics