Skip to main content

Control of Floral Organ Identity by Homeotic MADS-Box Transcription Factors

  • Conference paper
Plant Promoters and Transcription Factors

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 20))

Abstract

In recent years the combined use of genetics and molecular biology has resulted in dramatic progress in the field of developmental biology, particularly in the case of Drosophila. These complementary approaches are also being applied to the problem of flower development and initial results already demonstrate that, despite the complexity of the system, there may be an underlying unity with the animal kingdom. The purpose of this chapter is to review the current state of our knowledge of how a large family of evolutionarily conserved, related transcription factors, the MADS-box proteins, is involved in telling the plant where, when and how to form a flower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerer G (1990) Identification, purification and cloning of a polypeptide (PRTF/ GRM) that binds to mating-specific promoter elements in yeast. Genes Dev 4: 299–312

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993

    PubMed  CAS  Google Scholar 

  • Bercy J, Dubois E, Messenguy F (1987) Regulation of arginine metabolism in Saccharomyces cerevisiae: expression of the three ARGR regulatory genes and cellular localization of their products. Gene 55: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20

    PubMed  CAS  Google Scholar 

  • Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114: 599–615

    Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementry floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposonmutagenesis in Antirrhinum majus. Genes Dev 4: 1483–93

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) floricaula: A homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322

    Google Scholar 

  • Dalton S, Treisman R (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68: 597–612

    Article  PubMed  CAS  Google Scholar 

  • Dolan JW, Fields S (1991) Cell-type-specific transcription in yeast. Biochim Biophys Acta 1088: 155–169

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene Agamous by the Apetala2 product. Cell 65: 991–1002

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Messenguy F (1991) In vitro studies of the binding of the ARGR proteins to the ARG5,6 promoter. Mol Cell Biol 11: 2162–2168

    PubMed  CAS  Google Scholar 

  • Ekker SC, von Kessler DP, Beachy PA (1992) Differential DNA sequence recognition is a determinant of specificity in homeobox gene action. EMBO J 11: 40594072

    Google Scholar 

  • Errede B, Ammerer G (1989) STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev 3: 1349–1361

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Estruch JJ, Sommer H, Spena A (1993) NTGLO: tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus, eDNA sequence and expression pattern. Mol Gen Genet 239: 310–312

    PubMed  CAS  Google Scholar 

  • Haughn GW, Somerville CR (1988) Genetic control of morphogenesis in Arabidopsis. Dev Genet 9: 73–89

    Article  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Huijser P, Klein J, Lönnig W-E, Meijer H, Saedler H, Sommer H (1992) Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239–1249

    PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Lord EM (1991) The concepts of heterochrony and homeosis in the study of floral morphogenesis. Flowering Newslett 11: 4–13

    Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1—AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5: 484–495

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF (1992a) Manipulation of flower structure in transgenic tobacco. Cell 71: 133–134

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992b) Molecular characterization of the Arabidopsis floral homeotic gene APETALAI. Nature 360: 273–277

    Article  PubMed  CAS  Google Scholar 

  • Marais RM, Hsuan JJ, McGuigan C, Wynne J, Treisman R (1992) Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange. EMBO J 11: 97–105

    PubMed  CAS  Google Scholar 

  • Meyerowitz EM, Smyth DR, Bowman JL (1989) Abnormal flowers and pattern formation in floral development. Development 106: 209–217

    Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic arabidopsis plants alters floral organ identity. Cell 71: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Mueller CGF, Nordheim A (1991) A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation. EMBO J 10: 4219–4229

    PubMed  CAS  Google Scholar 

  • Nacken WKF, Huijser P, Beltran J-P, Saedler H, Sommer H (1991) Molecular characterization of two stamen-specific genes, tapi and fill, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus. Mol Gen Genet 229: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989–1003

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Zs, Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral

    Google Scholar 

  • development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255–266

    Google Scholar 

  • Pollock R, Treisman R (1991) Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev 5: 2327–2341

    Google Scholar 

  • Rosenthal N (1989) Muscle cell differentiation. Curr Opinion Cell Biol 1: 1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Schultz EA, Pickett FB, Haughn GW (1991) The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers. Plant Cell 3: 1221–1237

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Zs, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936

    Article  Google Scholar 

  • Schwarz-Sommer Zs, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11: 251–263

    Google Scholar 

  • Sommer H, Beltran JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz Zs (1990) Deficiens, a homeotic gene involved in the control of flower morpho-genesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613

    Google Scholar 

  • Treisman R (1990) The SRE: a growth factor responsive transcriptional regulator. Semin Cancer Biol 1: 47–58

    PubMed  CAS  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig W-E, Saedler H, Sommer H, Schwarz-Sommer Zs (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of ANTIRRHINUM floral organogenesis. EMBO J 11: 4693–4704

    Google Scholar 

  • van Tunen AJ, Angenent GC (1991) How general are the models describing floral morphogenesis? Flowering Newslett 12: 34–37s

    Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859

    Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Yu Y-T, Breitbart RE, Smoot LB, Youngsook L, Mandavi V, Nadel-Ginard B (1992) Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev 6: 1783–1798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, B., Schwarz-Sommer, Z. (1994). Control of Floral Organ Identity by Homeotic MADS-Box Transcription Factors. In: Nover, L. (eds) Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48037-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48037-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22304-8

  • Online ISBN: 978-3-540-48037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics