Skip to main content

Stress Response and Aging in Caenorhabditis elegans

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Abstract

Mutants of C. elegans that exhibit extraordinarily long life-spans are proving a rich source of information on the molecular determinates of aging rate. Such long-lived genetic variants have been subject to a range of biological, biochemical, and molecular analysis, making them an invaluable resource in the current drive to understand aging mechanisms. The mutations conferring extended life-span also confer many other phenotypes including resistance to a variety of extrinsic environmental stresses. This may provide a clue as to why these mutants display extended longevity. Perhaps the long-lived mutants are also resistant to intrinsic metabolic stresses and longevity is a consequence of an increased capacity to deal with the macromolecular damage normally caused by these stresses. However, at the time of writing there is little direct evidence for any particular mechanism for life-span extension and it is likely that different mutations extend life-span in different ways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53A: B240 - B244

    Article  PubMed  CAS  Google Scholar 

  • Anderson GL (1982) Superoxide dismutase activity in dauer larvae of Caenorhabditis elegans (Nematoda: Rhabditidae). Canadian Journal of Zoology 60: 288–291

    Article  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Baber P, Adamson C, Walker GA, Walker DW, Lithgow GJ (1999) PI3-kinase Inhibition Induces Dauer Formation, Thermotolerance and Longevity in C. elegans. Neurobiol Aging (in press)

    Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidants, antioxidants and aging. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defences. CSHL Press, New York, pp 201–246

    Google Scholar 

  • Beckman KB, Ames BN (1998) Mitochondrial aging: open questions. Ann NY Acad Sci 854: 118–127

    Article  PubMed  CAS  Google Scholar 

  • Bolla R, Brot N (1975) Age dependent changes in enzymes involved in macromolecular synthesis in Turbatrix aceti. Arch Biochem Biophy 169: 227–236

    Article  CAS  Google Scholar 

  • Candido EP, Jones D, Dixon DK, Graham RW, Russnak RH, Kay RJ (1989) Structure, organization, expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome 31: 690–697

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18: 6927–6933

    Article  PubMed  CAS  Google Scholar 

  • Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med 18: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141: 1399–1406

    PubMed  CAS  Google Scholar 

  • Dulic V, Gafni A (1987) Mechanism of aging of rat muscle glyceraldehyde-3-phosphate dehydrogenase studied by selective enzyme-oxidation. Mech Ageing Dev 40: 289–306

    Article  PubMed  CAS  Google Scholar 

  • Felkai S, Ewbank JJ, LemieuxJ, Labb, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18: 1783–1792

    CAS  Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago and London

    Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86

    PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol Biol Sci 43: B102 - B109

    CAS  Google Scholar 

  • Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150: 129–155

    PubMed  CAS  Google Scholar 

  • Gil EB, Malone LE, Liu LX, Johnson CD, Lees JA (1999) Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci USA 96: 2925–2930

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: Genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137: 107–120

    Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12: 12–45

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol Biol Sci 11: 298–300

    CAS  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutation Res 275: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Hass MA, Massaro D (1988) Regulation of the synthesis of superoxide dismutase in rat lungs during oxidant and hyperthermic stresses. J Biol Chem 263: 776–781

    PubMed  CAS  Google Scholar 

  • Hayakawa M, Sugiyama S, Hattori K, Takasawa M, Ozawa T (1993) Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem 119: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Hekimi S, Lakowski B, Barnes TM, Ewbank JJ (1998) Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet 14: 14–20

    Article  PubMed  CAS  Google Scholar 

  • Heydari AR, Wu B, Takahashi R, Strong R, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 13: 2909–2918

    PubMed  CAS  Google Scholar 

  • Hodgkin J, Barnes TM (1991) More is not better: brood size and population growth in a selffertilizing nematode. Proc R Soc Lond B Biol Sci 246: 19–24

    Article  CAS  Google Scholar 

  • Hoffman AA, Parsons PA (1993) Selection for adult desiccation resistance in Drosophila melanogaster: Fitness components, larval resistance and stress correlations. Biol J Linn Soc 48: 43–54

    Article  Google Scholar 

  • Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K (1994) Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74: 161–170

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K (1990) A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 237: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Suzuki N, Hartman PS, Suzuki K (1994) The effects of temperature on the longevity of a radiation-sensitive mutant rad-8 of the nematode Caenorhabditis elegans. J Gerontol Biol Sci. 49: B117–120

    CAS  Google Scholar 

  • Johnson TE, Hartman PS (1988) Radiation effects on life span in Caenorhabditis elegans. J Gerontol Biol Sci 43: B137–41

    CAS  Google Scholar 

  • Johnson TE, Lithgow GJ, Murakami S (1996) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol Biol Sci 51A: B392 - B395

    Article  CAS  Google Scholar 

  • Johnson TE (1990) Caenorhabditis elegans offers the potential for molecular dissection of the aging process. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic Press, New York, pp 45–59

    Google Scholar 

  • Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF (1998) Yeast Clk-1 homologue (Cog7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J Biol Chem 273: 3351–3357

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Russnak RH, Kay RJ, Candido EP (1986) Structure, expression, evolution of a heat shock gene locus in Caenorhabditis elegans that is flanked by repetitive elements. J Biol Chem 261: 12006–12015

    PubMed  CAS  Google Scholar 

  • Kapahi P, Boulton ME, Kirkwood TB (1999) Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med 26: 495–500

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco Jr NR, Zhang J, Guarante L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80: 485–496

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type [see comments]. Nature 366: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, thermotolerance. J Gerontol A Biol Sci Med Sci 52: B48 - B52

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946

    Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 413–429

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95: 13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickel E, Weber LA (1989) Heat shock resistance conferred by expression of the HSP27 gene in rodent cells. J Cell Biol 109: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate development and longevity in Caenorhabditis elegans. Genetics 139: 1567–1583

    PubMed  CAS  Google Scholar 

  • Lezza AM, Boffoli D, Scacco S, Cantatore P, Gadaleta MN (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205: 772–779

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322

    Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang CF, Marzuki S (1990) Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem Int 22: 1067–1076

    PubMed  CAS  Google Scholar 

  • Lithgow GJ (1996) Invertebrate gerontology: the age mutations of Caenorhabditis elegans. Bioessays 18: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol Biol Sci 49: B270 - B276

    CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life span conferred by single-gene mutations and induced by thermal stress. Proc Nati Acad Sci USA 92: 7540–7544

    Article  CAS  Google Scholar 

  • Liu Y, Guyton KZ, Gorospe M, Xu Q, Kokkonen GC, Mock YD, Roth GS, Holbrook NJ (1996) Age-related decline in mitogen-activated protein kinase activity in epidermal growth factor-stimulated rat hepatocytes. J Biol Chem 271: 3604–3607

    Article  PubMed  CAS  Google Scholar 

  • Maccubbin AE, Przybyszewski J, Evans MS, Budzinski EE, Patrzyc HB, Kulesz-Martin M, Box HC (1995) DNA damage in UVB-irradiated keratinocytes. Carcinogenesis 16: 1659–1660

    Article  PubMed  CAS  Google Scholar 

  • Malone EA, Inoue T, Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143: 1193–1205

    PubMed  CAS  Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1958b) Prolongation of the life of Drosophila subobscura by brief exposure of adults to a high temperature. Nature 181: 496–497

    Article  Google Scholar 

  • Maynard Smith J (1958a) The effects of temperature and of egg-laying on the longevity of Drosophila subobscura. J Exp Biol 35: 832–843

    Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. H.K. Lewis, London

    Google Scholar 

  • Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995) Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Research 23: 1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23: 4122–4126

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Hertz GZ, Stormo GD, Johnson TE (1994) Detection of deletions in the mitochondrial genome of Caenorhabditis elegans. Nucleic Acids Research 22: 1075–1078

    Article  PubMed  CAS  Google Scholar 

  • Miguel J (1992) An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res 275: 209–216

    Article  Google Scholar 

  • Miguel J, Economos J, Fleming J, Johnson Jr JE (1980) Mitochondrial role in cell aging. Experimental Gerontology 15: 575–591

    Article  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207–1218

    PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (1998) Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol 8: 1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12: 2488–2498

    Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 457–494

    Google Scholar 

  • Parsons PA (1993) Evolutionary adaptation and stress: energy budgets and habitats preferred. Behav Genet 23: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (1995) Inherited stress resistance and longevity: a stress theory of ageing. Heredity 75 (Pt 2): 216–221

    Article  PubMed  Google Scholar 

  • Parsons PA (1996) Rapid development and a long life: an association expected under a stress theory of aging. Experientia 52: 643–646

    Article  PubMed  CAS  Google Scholar 

  • Rollet E, Lavoie JN, Landry J, Tanguay RM (1992) Expression of Drosophila’s 27 kDa heat shock protein into rodent cells confers thermal resistance. Biochem Biophys Res Commun 185: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Vu LN, Park SU, Graves JLJ (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Rouault JP, Kuwabara PE, Sinilnikova OM, Duret L, Thierry-Mieg D, Billaud M (1999) Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 9: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Sharma HK, Rothstein M (1980) Altered enolase in aged Turbatrix aceti results from conformational changes in the enzyme. Proc Natl Acad Sci USA 77: 5865–5868

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS (1993) The free radical hypothesis of aging: An appraisal of the current status. Aging Clin Exp Res 5: 3–17

    CAS  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216–228

    PubMed  CAS  Google Scholar 

  • Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96: 715–720

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390: 30

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148: 703–717

    PubMed  CAS  Google Scholar 

  • Van Voorhies WA (1992) Production of sperm reduces nematode lifespan. Nature 360: 456–458

    Article  PubMed  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292: 605–608

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 9: 1355–1361

    PubMed  CAS  Google Scholar 

  • Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S (1996) The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes and Development 9: 1074–1086

    Article  Google Scholar 

  • Walker GA, Walker DW, Lithgow GJ (1998) A relationship between thermotolerance and longevity in Caenorhabditis elegans. J Investig Dermatol Symp Proc 3: 6–10

    PubMed  CAS  Google Scholar 

  • Walker GA, Walker DW, Lithgow GJ (1998) Genes that determine both thermotolerance and rate of aging in Caenorhabditis elegans. Ann NY Acad Sci 851: 444–449

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, the evolution of senescence. Evolution 11: 398–411

    Article  Google Scholar 

  • Yamashita N, Hoshida S, Nishida M, Igarashi J, Taniguchi N, Tada M, Kuzuya T, Hori M (1997) Heat shock-induced manganese superoxide dismutase enhances the tolerance of cardiac myocytes to hypoxia-reoxygenation injury. J Mol Cell Cardiol 29: 1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M (1998) Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat. Circulation 98: 1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Yasuda K, Adachi H, Fujiwara Y, Ishii N (1999) Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 54: B47 - B51

    Article  PubMed  CAS  Google Scholar 

  • Yuh KC, Gafni A (1987) Reversal of age-related effects in rat muscle phosphoglycerate kinase. Proc Natl Acad Sci USA 84: 7458–7462

    Article  PubMed  CAS  Google Scholar 

  • Zeelon P, Gershon H, Gershon D (1973) Inactive enzyme molecules in aging organisms. Nematode fructose- 1, 6-diphosphate aldolase. Biochemistry 12: 1743–1750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lithgow, G.J. (2000). Stress Response and Aging in Caenorhabditis elegans . In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics