Skip to main content

Crossroads of Aging in the Nematode Caenorhabditis elegans

  • Chapter
Book cover The Molecular Genetics of Aging

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Abstract

Aging can be defined in three ways: (1) as a progressive increase in the probability of dying of nonaccidental causes, (2) as a progressive increase in the probability of being afflicted with a number of specific diseases, such as cancer, cardiovascular diseases, and neurodegenerative diseases, and (3) as a progressive increase in the prevalence of features that are not in themselves pathological, but which are linked to chronological age, like wrinkled skin or white hair. In recent years, several investigators have used definition (1) and the measure of life span in the nematode Caenorhabditis elegans to study genetic, cellular, and molecular mechanisms that might be responsible for the aging process in all organisms (Hekimi et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson GL (1982) Superoxide dismutase activity in the dauer larvae of Caenorhabditis elegans. Can J Zool 60: 288–291

    Article  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Avery L (1993) The genetics of feeding in Caenorhabditis elegans. Genetics 133:897–917 Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15: 279–295

    Google Scholar 

  • Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR (1999) Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 9 (9): 493–496

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94

    PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, White J (1988) The nervous system. In: The nematode Caenorhabditis elegans. Wood WB (ed) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp 337–391 Comfort A (1979) The biology of senescence, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  • Croll NA, Smith JM, Zuckerman BM (1977) The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 3: 175–189

    Article  PubMed  CAS  Google Scholar 

  • Davis MW, Somerville D, Lee RYN, Lockery S, Avery L, Fambrough DM (1995) Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function. J Neurosci 15: 8408–8418

    Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the life span of Caenorhabditis elegans. Genetics 141: 13991406

    Google Scholar 

  • Dulloo AG, Girardier L (1993) 24-hour energy expenditure several months after weight loss in the underfed rat: evidence for a chronic increase in whole-body metabolic efficiency. Int J Obes Relat Metab Disord 17: 115–123

    Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275: 980–983

    Article  PubMed  CAS  Google Scholar 

  • Felkai S, Ewbank JJ, Lemieux J, Labbé JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18(7): 17831792

    Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome University of Chicago Press, Chicago Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 15: 129–155

    Google Scholar 

  • Golden JW, Riddle DL (1984) A pheromone-induced developmental switch in Caenorhabditis elegans: temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci USA 81: 819–823

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137: 107–120

    Google Scholar 

  • Hekimi S, Boutis P, Lakowski B (1995) Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics 141: 1351–1364

    PubMed  CAS  Google Scholar 

  • Hekimi S, Lakowski B, Barnes TM, Ewbank JJ (1998) Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet 14: 14–20

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin J, Doniach T (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146: 149–164

    PubMed  CAS  Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the life span of C. elegans. Nature 399: 362–366

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Wood WB (1982) Genetic analysis of life span in Caenorhabditis elegans. Proc Natl Acad Sci USA 79: 6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Jonassen T, Marbois BN, Kim L, Chin A, Xia YR, Lusis AJ, Clarke CF (1996) Isolation and sequencing of the rat Coq7 gene and the mapping of mouse Coq7 to chromosome 7. Arch Biochem Biophys 330: 285–289

    Article  PubMed  CAS  Google Scholar 

  • Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF (1998) Yeast Clk-1 homologue (Cog7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J Biol Chem 273: 3351–3357

    Article  PubMed  CAS  Google Scholar 

  • Kagan RM, Niewmierzycka A, Clarke S (1997) Targeted gene disruption of the Caenorhabditis elegans L-isoaspartyl protein repair methyltransferase impairs survival of dauer stage nematodes. Arch Biochem Biophys 348: 320–328

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild-type. Nature 366: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946

    Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 413–429

    Article  PubMed  CAS  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22: 279–286

    Article  PubMed  CAS  Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life span in Caenorhabditis elegans by four clock genes. Science 272: 1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci 95: 13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Lane MA, Baer, DJ, Rumpler WV, Weindruch R, Ingram DK, Tilmont EM, Cutler RG, Roth GS (1996) Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci USA 93: 4159–4164

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci 90: 8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139: 1567–1583

    PubMed  CAS  Google Scholar 

  • Lee RYN, Lobel L, Hengartner M, Horvitz HR, Avery L (1997) Mutations in the alphal subunit of an L-type voltage-activated Cat+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16: 6066–6076

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life span of Caenorhabditis elegans. Science 278: 1319–1322

    Google Scholar 

  • Malone EA, Inoue T, Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143: 1193–1205

    PubMed  CAS  Google Scholar 

  • Marbois BN, Clarke CF (1996) The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 271: 2995–3004

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ, McCarter RJM (1991) Aging as a consequence of fuel utilization. Aging Clin Exp Res 3: 117–128

    CAS  Google Scholar 

  • McCarter R, Masoro EJ, Yu BP (1985) Rat muscle structure and metabolism in relation to age and food intake. Am J Physiol 248: E488 - E490

    PubMed  CAS  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1935) J Nutr 10: 63–79

    CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptorlike metabolic signaling pathway. Mol Cell 2: 887–893

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498 Pearl R ( 1928 ) The rate of living. Knopf, New York

    Google Scholar 

  • Raizen DM, Lee RYN, Avery L (1995) Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics 141: 1365–1382

    PubMed  CAS  Google Scholar 

  • Ramsey JJ, Roecker EB, Weindruch R, Kemnitz JW (1997) Energy expenditure of adult male rhesus monkeys during the first 30 mo of dietary restriction. Am J Physiol 272: E901 - E907

    PubMed  CAS  Google Scholar 

  • Rose MR (1991) Evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  • Riddle DL (1988) The dauer larva. In: The nematode Caenorhabditis elegans. Wood WB (ed) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp 393–412

    Google Scholar 

  • Riddle DL, Albert PS (1997) Genetics and environmental regulation of dauer larva development. In: C. elegans II. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp 739–768

    Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Starich TA, Lee RYN, Panzarella C, Avery L, Shaw JE (1996) eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell-cell coupling. J Cell Biol 134: 537–548

    Google Scholar 

  • Tan PB, Kim SK (1999) Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet 15 (4): 145–149

    Article  PubMed  CAS  Google Scholar 

  • Taub J, Lau JF, Ma C, Hahn JH, Hogue R, Rothblatt J, Chalfie M (1999) A cytosolic catalase is needed to extend adult life span in C. elegans daf-C and clk-1 mutants. Nature 399: 162–168

    Article  PubMed  CAS  Google Scholar 

  • Thomas JH, Birnby DA, Vowels JJ (1993) Evidence for parallel processing of sensory infor- mation controlling dauer formation in Caenorhabditis elegans. Genetics 134: 1105–1117

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292: 605–608

    PubMed  CAS  Google Scholar 

  • Weindruch RK, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C Thomas, Springfield, Illinois

    Google Scholar 

  • Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116: 641–654

    PubMed  CAS  Google Scholar 

  • Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259

    PubMed  CAS  Google Scholar 

  • Wood WB (1988) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp 337–391

    Google Scholar 

  • Wood WB (1998) Aging of C. elegans: mosaics and mechanisms. Cell 95: 147–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hekimi, S. (2000). Crossroads of Aging in the Nematode Caenorhabditis elegans . In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics