Skip to main content

Coordination of Metabolic Activity and Stress Resistance in Yeast Longevity

  • Chapter
The Molecular Genetics of Aging

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Summary

The genetic analysis of longevity in yeast has revealed the importance of metabolic control and resistance to stress in aging. It has also shown that these two physiological processes are interwoven. Molecular mechanisms underlying the longevity effects of metabolic control and stress resistance, as well as genetic stability, are emerging. The yeast RAS genes play a substantial role in coordinating at least the first two of these processes. Numerous correlates can be found between the physiological processes involved in yeast aging and aging in Caenorhabditis elegans and in Drosophila, and the dietary restriction paradigm in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alepuz PM, Cunningham KW, Estruch R (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26: 91–98

    Article  PubMed  CAS  Google Scholar 

  • Arking R, Buck S, Wells RA, Pretzlaff R (1988) Metabolic rates in genetically based long lived strains of Drosophila. Exp Gerontol 23: 59–76

    Article  PubMed  CAS  Google Scholar 

  • Arking R, Dudas SP, Baker GT (1993) Genetic and environmental factors regulating the expression of an extended longevity phenotype in a long lived strain of Drosophila. Genetica 91: 127–142

    Article  PubMed  CAS  Google Scholar 

  • Austriaco NR, Guarente L (1997) Changes of telomere length cause reciprocal changes in the lifespan of mother cells in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 9768–9772

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew JW, Mittwer T (1953) Demonstration of yeast bud scars with the electron microscope. J Bacteriol 65: 272–275

    PubMed  CAS  Google Scholar 

  • Baroni MD, Monti P, Alberghina L (1994) Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Nature 371: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Barton AA (1950) Some aspects of cell division in Saccharomyces cerevisiae. J Gen Microbiol 4: 84–87

    Article  PubMed  CAS  Google Scholar 

  • Barz WP, Walter P (1999) Two endoplasmic reticulum ( ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell 10: 1043–1059

    Google Scholar 

  • Berger KH, Yaffe MP (1998) Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol 18: 4043–4052

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Ulane R, Bowers B (1974) A molecular model for morphogenesis: the primary septum of yeast. Curr Top Cell Regul 8: 1–32

    PubMed  CAS  Google Scholar 

  • Chelstowska A, Butow RA (1995) RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 270: 18141–18146

    Article  PubMed  CAS  Google Scholar 

  • Chen JB, Sun J, Jazwinski SM (1990) Prolongation of the yeast life span by the v-Ha-RAS oncogene. Mol Microbiol 4: 2081–2086

    Article  PubMed  CAS  Google Scholar 

  • Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7: 607–610

    Article  PubMed  CAS  Google Scholar 

  • Conrad-Webb H, Butow RA (1995) A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae. Mol Cell Biol 15: 2420–2428

    PubMed  CAS  Google Scholar 

  • Curtsinger JW, Fukui HH, Townsend DR, Vaupel JW (1992) Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 258: 461–463

    Article  PubMed  CAS  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heatinduced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5116–5121

    Article  PubMed  CAS  Google Scholar 

  • D’mello NP, Jazwinski SM (1991) Telomere length constancy during aging of Saccharomyces cerevisiae. J Bacteriol 173: 6709–6713

    PubMed  Google Scholar 

  • D’mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269: 15451–15459

    PubMed  Google Scholar 

  • Dudas SP, Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol 50A: B117–B127

    CAS  Google Scholar 

  • Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171: 37–42

    PubMed  CAS  Google Scholar 

  • Egilmez NK, Chen JB, Jazwinski SM (1989) Specific alterations in transcript prevalence during the yeast life span. J Biol Chem 264: 14312–14317

    PubMed  CAS  Google Scholar 

  • Engelberg D, Klein C, Martinetto H, Struhl K, Karin M (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275: 980–983

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Funks WD, Wang S-S, Weinrich SL, Avilion AA, Chiu C-P, Adams RR, Chang E, Allsopp RC, Tu J, Le S, West MD, Harley CB, Andrews WH, Greider CW, Villeponteau B (1995) The RNA component of human telomerase. Science 269: 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago Graves JL, Toolson EC, Jeong C, Vu LN, Rose MR (1992) Dessication, flight, glycogen, and postponed senescence in Drosophila melanogaster. Physiol Zool 65: 268–286

    Google Scholar 

  • Hardie DG, Carling D (1997) The AMP-activated protein kinase. Fuel gauge of the mammalian cell? Eur J Biochem 246: 259–273

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during aging of human fibroblasts. Nature 345: 458–460

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Stephens LR, Piggott JR (1993) Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation. J Biol Chem 268: 3374–3383

    PubMed  CAS  Google Scholar 

  • Heydari AR, Wu B, Takahashi R, Strong R, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 13: 2909–2918

    PubMed  CAS  Google Scholar 

  • Jazwinski SM (1990a) Aging and senescence of the budding yeast Saccharomyces cerevisiae. Mol Microbiol 4: 337–343

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1990b) An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol 45: B68–B74

    PubMed  CAS  Google Scholar 

  • Jazwinski SM (1993) The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91: 35–51

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1996a) Longevity-assurance genes and mitochondrial DNA alterations: yeast and filamentous fungi. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging, 4th ed Academic Press, San Diego, pp 39–54

    Google Scholar 

  • Jazwinski SM (1996b) Longevity, genes, and aging. Science 273: 54–59

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1999a) Molecular mechanisms of yeast longevity. Trends Microbiol 7: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1999b) Nonlinearity of the aging process revealed in studies with yeast. In: Bohr VA, Clark BFC, Stevnsner T (eds) Molecular biology of aging. Munksgaard, Copenhagen, pp 35–44

    Google Scholar 

  • Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24: 423–436

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM, Kim S, Lai C-Y, Benguria A (1998) Epigenetic stratification: the role of individual change in the biological aging process. Exp Gerontol 33: 571–580

    Article  PubMed  CAS  Google Scholar 

  • Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM (1998) Homologs of the yeast longevity gene LAGI in Caenorhabditis elegans and human. Genome Res 8: 1259–1272

    PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Trends Genet 15: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi K, Miyajima A, Arai KI, Matsumoto K (1986) Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83: 8172–8176

    Article  PubMed  CAS  Google Scholar 

  • Kale SP, Jazwinski SM (1996) Differential response to UV stress and DNA damage during the yeast replicative life span. Dev Genet 18: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127: 1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80: 485–496

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser SM, Guarente L (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89: 381–391

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol 52A: B48–B52

    CAS  Google Scholar 

  • Kim S, Villeponteau B, Jazwinski SM (1996) Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae. Biochem Biophys Res Commun 219: 370–376

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kirchman PA, Benguria A, Jazwinski SM (1998) Experimentation with the yeast model. In: Yu BP (ed) Methods in aging research. CRC Press, Boca Raton, pp 191–213

    Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946

    Google Scholar 

  • King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Kirchman PA, Kim S, Lai C-Y, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152: 179–190

    PubMed  CAS  Google Scholar 

  • Lai E, Prezioso VR, Smith E, Litvin O, Costa RH, Darnell JE (1990) HNF-3A, a hepatocyteenriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4: 1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272: 1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139: 1567–1583

    PubMed  CAS  Google Scholar 

  • Laurenson P, Rine J (1992) Silencers, silencing, and heritable transcriptional states. Microbiol Rev 56: 543–560

    PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322

    Google Scholar 

  • Lin Y-J, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946

    Article  PubMed  CAS  Google Scholar 

  • Lindquist SL, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Nail Acad Sci USA 93: 5301–5306

    Article  CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540–7544

    Article  PubMed  CAS  Google Scholar 

  • Loo S, Rine J (1995) Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol 11: 519–548

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38: 996–1003

    Article  Google Scholar 

  • Luckinbill LS, Riha V, Rhine S, Grudzien TA (1989) The role of glucose-6–phosphate dehy- drogenase in the evolution of longevity in Drosophila melanogaster. Heredity 65: 29–38

    Article  Google Scholar 

  • Luhtala TA, Roecker EB, Pugh T, Feuers RJ, Weindruch R (1994) Dietary restriction attenuates age-related increases in rat skeletal muscle antioxidant enzyme activities. J Gerontol 49: B231–B238

    PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12: 1997–2003

    PubMed  CAS  Google Scholar 

  • Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB, Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Masoro E (1995) Dietary restriction. Exp Gerontol 30: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Morishita T, Mitsuzawa H, Nakafuku M, Nakamura S, Hattori S, Anraku Y (1995) Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Science 270: 1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3–OH kinase family member regulates longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183: 1751–1752

    Article  PubMed  CAS  Google Scholar 

  • Mosch H-U, Roberts RL, Fink GR (1996) Ras2 signals via the CDC42/STE20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5352–5356

    Article  PubMed  CAS  Google Scholar 

  • Muller I (1985) Parental age and the life-span of zygotes of Saccharomyces cerevisiae. Antonie von Leeuwenhoek J Microbiol Serol 51: 1–10

    Article  CAS  Google Scholar 

  • Muller I, Zimmermann M, Becker D, Flomer M (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207–1218

    PubMed  CAS  Google Scholar 

  • O’Brien RM, Noisin EL, Suwanichkul A, Yamasaki T, Lucas PC, Wang JC, Powell DR, Granner DK (1995) Hepatic nuclear factor-3 and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol 15: 1747–1758

    PubMed  Google Scholar 

  • Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2: 887–893

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The forkhead transcription factor DAF-16 transduces insulin-like and metabolic and longevity signals in C. elegans. Nature 389: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Pahlavani MA, Haley-Zitlin V, Richardson A (1994) Influence of dietary restriction on gene expression: changes in transcription of specific genes. In: Yu BP (ed) Modulation of the aging process by dietary restriction. CRC Press, Boca Raton, pp 143–156

    Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12: 2488–2498

    Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence gene expression in yeast. Science 235: 576–580

    Article  PubMed  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SODI in motorneurons. Nat Genet 19: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Patton JL, Srinivasan B, Dickson RC, Lester RL (1992) Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J Bacteriol 174: 7180–7184

    PubMed  CAS  Google Scholar 

  • Pohley H-J (1987) A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech Ageing Dev 38: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Riha VF, Luckinbill LS (1996) Selection for longevity favors stringent metabolic control in Drosophila melanogaster. J Gerontol 51A: B284–B294

    CAS  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010

    Article  Google Scholar 

  • Rose MR (1991) Evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  • Rose MR, Vu LN, Parks SU, Graves JL (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Rothermel BA, Thornton JL, Butow RA (1997) Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 272: 19801–19807

    Article  PubMed  CAS  Google Scholar 

  • Sabatino F, Masoro EJ, McMahan CA, Kuhn RW (1991) Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J Gerontol 46: B171–B179

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkowich KA, Lindquist SL (1992) HSP104 is required for tolerance to many forms of stress. EMBO J 11: 2357–2364

    PubMed  CAS  Google Scholar 

  • Service PM (1987) Physiological mechanisms of increased stress resistance in Drosophila melanogaster. Physiol Zool 60: 321–326

    Google Scholar 

  • Service PM, Hutchinson EW, Mackinley MD, Rose MR (1985) Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 58: 380–389

    Google Scholar 

  • Shama S, Kirchman PA, Jiang JC, Jazwinski SM (1998a) Role of RAS2 in recovery from chronic stress: effect on yeast life span. Exp Cell Res 245: 368–378

    Article  PubMed  CAS  Google Scholar 

  • Shama S, Lai C-Y, Antoniazzi JM, Jiang JC, Jazwinski SM (1998b) Heat stress-induced life span extension in yeast. Exp Cell Res 245: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91: 1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1997) Accelerated aging and nucleolar fragmentation in yeast sgsl mutants. Science 277: 1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1998a) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52: 533–560

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1998b) Molecular mechanisms of yeast aging. Trends Biochem Sci 23: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Small WC, Brodeur RD, Sandor A, Fedorova N, Li G, Butow, RA, Srere PA (1995) Enzymatic and metabolic studies on retrograde regulation mutants of yeast. Biochemistry 34: 5569–5576

    Article  PubMed  CAS  Google Scholar 

  • Smeal T, Claus J, Kennedy B, Cole F, Guarente L (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84: 633–642

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216–228

    PubMed  CAS  Google Scholar 

  • Sun J, Kale SP, Childress AM, Pinswasdi C, Jazwinski SM (1994) Divergent roles of RASI and RAS2 in yeast longevity. J Biol Chem 269: 18638–18645

    PubMed  CAS  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30 Tatchell K (1993) RAS genes in the budding yeast Saccharomyces cerevisiae. In: Kurjan T (ed)

    Google Scholar 

  • Signal transduction: prokaryotic and simple eukaryotic systems. Academic Press, San Diego, pp 147–188

    Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148: 703–717

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292: 605–608

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 9: 1355–1361

    PubMed  CAS  Google Scholar 

  • Van Remmen H, Ward W, Sabia RV, Richardson A (1994) Effect of age on gene expression and protein degradation. In: Masoro E (ed) The handbook of physiology of aging. Oxford University Press, New York, pp 171–234

    Google Scholar 

  • Vaupel JW, Johnson TE, Lithgow GJ (1994) Rates of mortality in populations of Caenorhabditis elegans. Science 266: 826

    Article  PubMed  CAS  Google Scholar 

  • Vélot C, Haviernik P, Lauquin GJ-M (1996) The Saccharomyces cerevisiae RTG2 gene is a regulator of aconitase expression under catabolite repression conditions. Genetics 144: 893–903

    PubMed  Google Scholar 

  • Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259

    PubMed  CAS  Google Scholar 

  • Xia E, Rao G, Van Remmen H, Heydari AR, Richardson A (1995) Activities of antioxidant enzymes in various tissues of male Fischer 344 rats altered by food restriction. J Nutr 125: 195–201

    PubMed  CAS  Google Scholar 

  • Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94: 11168–11172

    Article  PubMed  CAS  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272: 258–262

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jazwinski, S.M. (2000). Coordination of Metabolic Activity and Stress Resistance in Yeast Longevity. In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics