Skip to main content

Stem Cells and Genetics in the Study of Development, Aging, and Longevity

  • Chapter
The Molecular Genetics of Aging

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Abstract

Development and aging, indispensable in the case of the former and regrettably unavoidable in that of the latter, are inextricably linked. Most fundamental to this relationship is that both are strictly defined by the same temporal dimension. Development in mammals is generally regarded as beginning at the union of egg and sperm producing a zygote, and ending at or near the time of birth; thus, this process occurs largely in the intrauterine environment of the mother. Some may argue that this definition is too restrictive and that development continues until full body size is attained or, perhaps more importantly, until reproductive function commences. Aging is less precisely defined both conceptually and temporally. It is important to be precise conceptually about the meaning of aging. It is not the same as organismal longevity nor the determination of longevity. The latter, for example, has a strong genetic component that is usually considered to be lacking in aging, a process largely defined by the effects of environmental factors. There are congenital diseases, the progerias, in which aging is greatly accelerated, but the defect is typically in a mechanism repairing damage from environmental stresses (Martin et al. 1996). Some regard aging as the immediate events that lead up to an organism’s death, including the diseases of later life that usually claim an organism; in humans these are often cardiovascular disease, cancer, complications from diabetes, and complications arising from neurodegenerative diseases and dementia. For the purposes of discussion here, however, a broader interpretation will be applied and it will be assumed that aging begins at conception, since the deleterious side effects of forging an existence probably begin to accumulate immediately. Thus, according to these admittedly arbitrary definitions, development and aging occur simultaneously during the first part of a mammal’s life; aging not only persists but probably accelerates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abkowitz JL, Lineberger ML, Newton MA, Shelton GH, Ott RL, Guttorp P (1990) Evidence for the maintenance of hematopoiesis in a large animal by the sequential activation of stem-cell clones. Proc Natl Acad Sci USA 87: 9062–9066

    PubMed  CAS  Google Scholar 

  • Abkowitz JL, Taboada M, Shelton GH, Catlin SN, Guttorp P, Kiklevich JV (1998) An X chromosome gene regulates hematopoietic stem cell kinetics. Proc Natl Acad Sci USA 95: 38623866

    Google Scholar 

  • Anderson JE, Gooley TA, Schoch G, Anasetti C, Bensinger WI, Clift RA, Hansen JA, Sanders JE, Storb R, Appelbaum FR (1997) Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood 89: 2578–2585

    PubMed  CAS  Google Scholar 

  • Beddington RSP, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96: 195–209

    PubMed  CAS  Google Scholar 

  • Bjornson CRR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537

    Google Scholar 

  • Blackburn EM, Greider CW (eds) (1995) Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34

    PubMed  CAS  Google Scholar 

  • Bodnar G, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    PubMed  CAS  Google Scholar 

  • Boggs SS, Patrene KD, Austin CA, Vecchini F, Tollerud DJ (1991) Latent deficiency of the hematopoietic microenvironment of aged mice as revealed in W/W’ mice given +/+ cells. Exp Hematol 19: 683–687

    PubMed  CAS  Google Scholar 

  • Bohr V, Anson RM, Mazur S, Dianov G (1998) Oxidative DNA damage processing and changes with aging. Toxicol Lett 103: 47–52

    Google Scholar 

  • Bradford GB, Williams B, Rossi R, Bertoncello I (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25: 445–453

    PubMed  CAS  Google Scholar 

  • Buller RE, Sood AK, Lallas T, Buekers T, Skitling JS (1999) Association between nonrandom X-chromsome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. J Natl Cancer Inst 91: 339–346

    PubMed  CAS  Google Scholar 

  • Campisi J (1996) Replicative senescence: an old lives’ tale? Cell 84: 497–500

    PubMed  CAS  Google Scholar 

  • Capel B, Hawley R, Covarrubias L, Hawley T, Mintz B (1989) Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice. Proc Natl Acad Sci USA 86: 4564–4568

    PubMed  CAS  Google Scholar 

  • Capel B, Hawley RG, Mintz B (1990) Long-and short-lived murine hematopoietic stem cell clones individually identified with retroviral integration markers. Blood 75: 2267–2270

    PubMed  CAS  Google Scholar 

  • Cashman J, Eaves AC, Eaves CJ (1985) Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood 66: 1002–1005

    PubMed  CAS  Google Scholar 

  • Chadwick DJ, Cardew G (eds) (1997) Telomeres and telomerase. John Wiley and Sons, New York

    Google Scholar 

  • Chen J, Astle BA, Harrison DE (1999) Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 27: 928–935

    PubMed  CAS  Google Scholar 

  • Cheshier SH, Morrison J, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96: 3120–3125

    PubMed  CAS  Google Scholar 

  • Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68: 503–554

    PubMed  CAS  Google Scholar 

  • de Haan G, Nijhof W, Van Zant G (1997a) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: Correlation between lifespan and cycling activity. Blood 89: 1543–1550

    Google Scholar 

  • de Haan G, Van Zant G (1997b) Intrinsic and extrinsic control of hemopoietic stem cell numbers: Mapping of a stem cell gene. J Exp Med 186: 529–536

    Google Scholar 

  • de Haan G, Gelman R, Watson A, Yunis E, Van Zant G (1998) A putative gene causes variability in lifespan among genotypically identical mice. Nat Genet 19: 114–116

    PubMed  Google Scholar 

  • de Haan G, Van Zant G (1999a) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93: 3294–3301

    PubMed  Google Scholar 

  • de Haan G, Van Zant G (1999b) Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J 13: 707–713

    PubMed  Google Scholar 

  • Dexter TM, Lajtha LG (1974) Proliferation of haemopoietic stem cells in vitro. Br J Haematol 28: 525–530

    PubMed  CAS  Google Scholar 

  • Dick JE, Lapidot T, Vormoor J, Larochelle A, Bonnet D, Wang J (1995) Human hematopoiesis in SCID mice. In: Gluckman E, Coulombel L (eds) Ontogeny of hematopoiesis. E. Gluckman and L. Coulombel, eds. INSERM, Vandoeuvre-les-Nancy, pp. 97–101

    Google Scholar 

  • Effros RB (1998) Replicative senescence in the immune system: impact of the Hayflick limit on T-cell function in the elderly. Am J Hum Genet 62: 1003–1007

    PubMed  CAS  Google Scholar 

  • Eldridge PW, Dewey MJ (1986) Genotype-limited changes in platelet and erythroid kinetics in Friend-virus-infected allophenic mice. Exp Hematol 14: 380–385

    PubMed  CAS  Google Scholar 

  • Fraser CC, Eaves CJ, Szilvassy SJ, Humphries KR (1990) Expansion of retrovirally marked totipotent hematopoietic stem cells. Blood 76: 1071–1076

    PubMed  CAS  Google Scholar 

  • Gale E, Fielding K, Harrison CN, Linch DC (1997) Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol 98: 512–519

    PubMed  CAS  Google Scholar 

  • Geiger H, Sick S, Bonifer C, Muller AM (1998) Globin gene expression is reprogrammed in chimeras generated by injecting adult hematopoietic stem cells into mouse blastocysts. Cell 93: 1055–1065

    PubMed  CAS  Google Scholar 

  • Gelman R, Watson, Bronson R, Yunis E (1988) Murine chromosomal regions correlated with longevity. Genetics 118: 693–704

    PubMed  CAS  Google Scholar 

  • Globerson A (1999) Hematopoietic stem cells and aging. Exp Gerontol 34:137–146 Goldwasser E (1975) Erythropoietin and the differentiation of red blood cells. Fed Proc 34: 2285–2292

    Google Scholar 

  • Greenberg RA, Chin L, Femino A, Lee K-H, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4â 2/3 cancer-prone mouse. Cell 97: 515–525

    PubMed  CAS  Google Scholar 

  • Gurdon JB (1968) Transplanted nuclei and cell differentiation. Sci Am 219: 24–35

    PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460

    PubMed  CAS  Google Scholar 

  • Harrison E (1972) Normal function of transplanted mouse erythrocyte precursors for 21 months beyond donor life spans. Nat New Biol 237: 220–222

    PubMed  CAS  Google Scholar 

  • Harrison E (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55: 77–81

    PubMed  CAS  Google Scholar 

  • Harrison DE (1983) Long-term erythropoietic repopulating ability of old, young and fetal stem cells. J Exp Med 157: 1496–1504

    PubMed  CAS  Google Scholar 

  • Harrison DE, Astle CM, Delaittre JA (1978) Loss of proliferative capacity in immunohemopoietic stem cells is caused by serial transplantation rather than aging. J Exp Med 147: 15261531

    Google Scholar 

  • Harrison DE, Lerner C, Hoppe PC, Carlson GA, Ailing D (1987) Large numbers of primitive cells are active simultaneously in aggregated embryo chimeric mice. Blood 69: 773–777

    PubMed  CAS  Google Scholar 

  • Harrison E, Astle CM, Stone M (1989) Effects of age on transplantable primitive immunohematopoietic stem cell ( PSC) numbers and function. J Immunol 142: 3833–3840

    Google Scholar 

  • Hayflick L (1998) How and why we age. Exp Gerontol 33: 639–653

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. J Exp Cell Res 25: 585–621

    Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399: 362–366

    PubMed  CAS  Google Scholar 

  • Iscove NN, Nawa K (1997) Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 7: 805–808

    PubMed  CAS  Google Scholar 

  • Johansson CB, Momma S, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25–34

    PubMed  CAS  Google Scholar 

  • Johnson FB, Sinclair DA, Guarente L (1999) Molecular biology of aging. Cell 96:291–302 Jordan CT, Lemischka IR (1990) Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 4: 220–232

    Google Scholar 

  • Kay HEM (1965) How many cell generations? Lancet ii: 418

    Google Scholar 

  • Keller G, Snodgrass R (1990) Life span of multipotential hematopoietic stem cells in vivo. J Exp Med 171: 1407–1418

    PubMed  CAS  Google Scholar 

  • Koury MJ (1992) Programmed cell death (apoptosis) in hematopoiesis. Exp Hematol 20: 391–394

    PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W, Manyani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178: 787–791

    PubMed  CAS  Google Scholar 

  • Liu K, Schoonmaker MM, Levine BL, June CH, Hodes RJ, Weng N (1999) Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc Natl Acad Sci USA 96: 5147–5152

    PubMed  CAS  Google Scholar 

  • Loeffler M, Potten CS (1997) Stem cells and cellular pedigrees–a conceptual introduction. In: Potten CS (ed) Stem cells. C.S. Potten, ed. Academic Press, London, pp. 1–27

    Google Scholar 

  • Mannervik M, Nibu Y, Zhang H, Levine M (1999) Transcriptional coregulators in development. Science 284: 606–609

    PubMed  CAS  Google Scholar 

  • Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, Moore KJ (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17: 280–284

    PubMed  CAS  Google Scholar 

  • Martin G, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13: 25–34

    PubMed  CAS  Google Scholar 

  • Mauch P, Botnick LE, Hannon EC, Obbagy J, Hellman S (1982) Decline in bone marrow proliferative capacity as a function of age. Blood 60: 245–252

    PubMed  CAS  Google Scholar 

  • Metcalf D (1988) The molecular control of blood cells. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Micklem HS, Ford CE, Evans EP, Ogden DA, Papworth DS (1972) Competitive in vivo proliferation of foetal and adult hematopoietic cells in lethally irradiated mice. J Cell Physiol 79: 293–298

    PubMed  CAS  Google Scholar 

  • Micklem HS, Lennon JE, Ansell JD, Gray RA (1987) Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose. Exp Hematol 15: 251–257

    PubMed  CAS  Google Scholar 

  • Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74 Morrison SJ, Prowse KR, Ho P, Weissman IL (1996a) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5: 207–216

    Google Scholar 

  • Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996b) The aging of hematopoietic stem cells. Nat Med 2: 1011–1016

    PubMed  CAS  Google Scholar 

  • Morrison SJ, White PM, Zock C, Anderson DJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96: 737–749

    PubMed  CAS  Google Scholar 

  • Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzatto L (1997) In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 94: 13782–13785

    PubMed  CAS  Google Scholar 

  • Ogden DA, Micklem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22: 287–293

    PubMed  CAS  Google Scholar 

  • Olovnikov AM (1971) Principles of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201: 1496–1499

    PubMed  CAS  Google Scholar 

  • Osawa M, Hanada K-I, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245

    PubMed  CAS  Google Scholar 

  • Osgood EE (1957) A unifying concept of the itiology of the leukemias, lymphomas, and cancers. J Natl Cancer Inst 18: 155–166

    PubMed  CAS  Google Scholar 

  • Peterson BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284: 168170

    Google Scholar 

  • Pietrzyk ME, Priestley GV, Wolf NS (1985) Normal cycling patterns of hematopoietic stem cell populations: an assay using long-term in vivo BrdU infusion. Blood 66: 1460–1462

    PubMed  CAS  Google Scholar 

  • Ploemacher RE, Brons NHC (1988) Isolation of hemopoietic stem cell subsets from murine bone marrow: I. Radioprotective ability of purified cell suspensions differing in the proportion of day-7 and day-12 CFU-S. Exp Hematol 16: 21–26

    PubMed  CAS  Google Scholar 

  • Ploemacher RE, van der Sluijs JP, van Beurden CA, Baert MR, Chan PL (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78: 2527–2533

    PubMed  CAS  Google Scholar 

  • Potten CS (1997) Stem cells, Academic Press, London

    Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001–1020

    Google Scholar 

  • Rebel VI, Miller CL, Eaves CJ, Lansdorp PM (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood 87: 3500–3507

    PubMed  CAS  Google Scholar 

  • Ross E, Anderson N, Micklem HS (1982) Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med 155: 432–444

    Google Scholar 

  • Rossant J, Nagy A (1999) In search of the tabula rosa of human cells. Nat Biotechnol 17:23–24 Rubin H (1997) Cell aging in vivo and in vitro. Mech Ageing Dev 98: 1–35

    Google Scholar 

  • Rudolph KL, Chang S, Lee H-W, Blasco M, Gottlieb GJ, Greider CW, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701712

    Google Scholar 

  • Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93: 2928–2935

    PubMed  CAS  Google Scholar 

  • Schlessinger D, Ko MSH (1998) Developmental genomics and its relation to aging. Genomics 52: 113–118

    CAS  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95: 13726–13731

    PubMed  CAS  Google Scholar 

  • Shay JW (1997) Telomerase in human development and cancer. J Cell Physiol 173: 266–270

    PubMed  CAS  Google Scholar 

  • Shiels PG, Kind AJ, Campbell KHS, Waddington D, Wilmut I, Colman A, Schnieke AE (1999) Analysis of telomere lengths in cloned sheep. Nature 399: 316–317

    PubMed  CAS  Google Scholar 

  • Siminovitch L, Till JE, McCulloch EA (1964) Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Comp Physiol 64: 23–31

    CAS  Google Scholar 

  • Smith LG, Weissman IL, Heimfeld S (1991) Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci USA 88: 2788–2792

    PubMed  CAS  Google Scholar 

  • Socie G (1996) Secondary malignancies. Curr Opin Hematol 6: 466–70

    Google Scholar 

  • Solter D, Gearhart J (1999) Biomedicine–Putting stem cells to work. Science 283: 1468–1470 Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62

    Google Scholar 

  • Spangrude GJ, Brooks DM, Tumas DB (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85: 1006–1016

    PubMed  CAS  Google Scholar 

  • Sprott RL (1997) Diet and caloric restriction. Exp Gerontol 32: 205–214

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Fraser CC, Eaves CJ, Lansdorp PM, Eaves AC, Humphries RK (1989) Retrovirusmediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopoietic repopulating ability. Proc Natl Acad Sci USA 86: 8798–8802

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147

    PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51: 29–36

    PubMed  CAS  Google Scholar 

  • Uchida N, Weissman IL (1992) Searching for hematopoietic stem cells: Evidence that Thy-1.11° Lin Sca-1+ cells are the only stem cells n C57BL/Ka-Thy-1.1 bone marrow. J Exp Med 175: 175–184

    PubMed  CAS  Google Scholar 

  • Van Zant G, Eldridge PW, Behringer RR, Dewey MJ (1983) Genetic control of hematopoietic kinetics revealed by analyses of allophenic mice and stem cell suicide. Cell 35: 639–645

    PubMed  Google Scholar 

  • Van Zant G, Holland BP, Eldridge PW, Chen J-J (1990) Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med 171: 15471565

    Google Scholar 

  • Van Zant G, Scott-Micus K, Thompson BP, Fleischman RA, Perkins S (1992) Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal cell genotype in mouse aggregation chimeras. Exp Hematol 20: 470–475

    PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96: 245–254

    PubMed  CAS  Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91: 9857–9860

    PubMed  CAS  Google Scholar 

  • Visser JWM, Bauman JGJ, Mulder AH, Eliason JF, de Leeuw AM (1984) Isolation of murine pluripotent hemopoietic stem cells. J Exp Med 159: 1576–1590

    PubMed  CAS  Google Scholar 

  • Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22: 127–128

    PubMed  CAS  Google Scholar 

  • Wakayama T, Perry A, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369–374

    PubMed  CAS  Google Scholar 

  • Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18: 472–477

    PubMed  CAS  Google Scholar 

  • Warner CM, Mclvor JL, Stephens TJ (1977) Chimeric drift in allophenic mice. Differentiation 9: 11–17

    PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatameric T7 DNA. Nat New Biol 239:197–201 Weismann A (1893) The germ-plasm: a theory of heredity. Walter Scott, London

    Google Scholar 

  • Williams LH, Udupa KB, Lipschitz DA (1986) Evaluation of the effect of age on hematopoiesis in the C57BL/6 mouse. Exp Hematol 14: 827–832

    PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813

    PubMed  CAS  Google Scholar 

  • Winton DJ, Ponder BA (1990) Stem-cell organization in mouse small intestine. Proc R Soc Lond B Biol Sci 241: 13–18

    CAS  Google Scholar 

  • Wynn RF, Cross MA, Hatton C, Will AM, Lashford LS, Dexter TM, Testa NG (1998) Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 351: 178–181

    PubMed  CAS  Google Scholar 

  • Yu H, Bauer B, Lipke GK, Phillips RL, Van Zant G (1993) Apoptosis and hematopoiesis in murine fetal liver. Blood 81: 373–384

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Zant, G. (2000). Stem Cells and Genetics in the Study of Development, Aging, and Longevity. In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics