Skip to main content

Neuronogenesis and the Early Events of Neocortical Histogenesis

  • Chapter
Book cover Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

The neocortex is central to the most highly evolved processing functions of the mammalian brain. These functions are intimately related to the architecture and massive scale of the neocortex and its regional organization as components of distributed neural systems. The neurons of the mammalian neocortex, represented by a great diversity of distinct classes and subclasses (Lorente de No 1938; Cajal 1952) arise from a proliferative pseudostratified ventricular epithelium (PVE) at the surface of the embryonic ventricular cavities (His 1889; Sauer 1935; Sauer 1936; Boulder Committee 1970) (Fig. 1A). Various lines of evidence now provide a glimpse of the workings of the proliferative process which reveal its pervasive integration with the succession of histogenetic events that follow. Thus, there is now evidence to suggest that neurons are specified with respect to class in the course of neuronogenesis in the PVE (Parnavelas et al. 1991; Mione et al. 1994; Mione et al. 1997) and that the regional map of the neocortex is foreshadowed by a corresponding regional map of PVE (Rakic 1988). That is, the earliest events of specification of cell class and of regional specification appear to occur coordinately with neuronogenesis within the proliferative cells of the PVE (Takahashi et al. 1999a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Bolado G, Swanson L (1996) Developmental brain maps: structure of the embryonic rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Anderson S, Eisenstat D, Shi L, Rubenstein J (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278: 474–476

    Article  PubMed  CAS  Google Scholar 

  • Barbe MF, Levitt P (1991) The early commitment of fetal neurons to the limbic cortex. J Neurosci 5: 519–533

    Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York

    Google Scholar 

  • Bhide P (1996) Cell cycle kinetics in the embryonic mouse corpus striatum. J Comp Neurol 374: 506–522

    Article  PubMed  CAS  Google Scholar 

  • Bicknese A, Sheppard AM, O’Leary DD, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14: 3500–3510

    PubMed  CAS  Google Scholar 

  • Bisconte J-C, Marty R (1975a) Analyse chronoarchitectonique du cerveau de rat par radioautographie. I. Histogenese du telencephale. J Hirnforsch 16: 55–74

    Google Scholar 

  • Bisconte J-C, Marty R (1975b) Etude quantitative du marquage radioautographique dans le Systeme nerveux du rat. II. Caracteristiques finales dans le cerveau de l’animal adulte. Exp Brain Res 22: 37–56

    Google Scholar 

  • Bittman K, Owens D, Kriegstein A, Lo Turco J (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortx. J Neurosci 17: 7037–7044

    PubMed  CAS  Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate nervous system: revised terminology: Anat Rec 166: 257–262

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig Brown E, Schreiber S (1996) A signaling pathway to translational control. Cell 86: 517–520

    Article  Google Scholar 

  • Cai L, Hayes N, Nowakowski R (1997a) Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex. J Neurosci 17: 2088–2100

    PubMed  CAS  Google Scholar 

  • Cai L, Hayes N, Nowakowski R (1997b) Local homogeneity of cell cycle length in developing mouse cortex. J Neurosci 17: 2079–2087

    PubMed  CAS  Google Scholar 

  • Cajal S, Ramon Y (1952) Histologie du Systeme Nerveux de l’Homme et des Vertebres. Consejo Superior de Investigaciones Cientificas, Madrid

    Google Scholar 

  • Cavanagh J, Mione M, Pappas I, Parnavelas J (1997) Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb Cortex 7: 293–302

    Article  PubMed  CAS  Google Scholar 

  • Caviness V (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164: 247–263

    Article  PubMed  Google Scholar 

  • Caviness V (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Dev Brain Res 4: 293–302

    Article  Google Scholar 

  • Caviness V, Sidman RL (1973) Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol 148: 141–152

    Article  PubMed  Google Scholar 

  • Caviness V, Takahashi T, Nowakowski R (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Caviness V, Takahashi T, Nowakowski R (1997) Cell proliferation in cortical development. In: Galaburda A, Christen Y (eds), Normal and abnormal development of the cortex. Springer, Berlin, Heidelberg, New York, pp 1–24

    Google Scholar 

  • Caviness V, Takahashi T, Nowakowski R (1999) The G1 restriction point as critical regulator of neocortical neuronogenesis. J Neurochem Res 24: 497–506

    Article  CAS  Google Scholar 

  • Cohen-Tannoudji M, Babinet C, Wassef M (1994) Early determination of a mouse somatosensory cortex marker. Nature 368: 460–463

    Article  PubMed  CAS  Google Scholar 

  • De Carlos JA, O’Leary DM (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12: 1194–1211

    PubMed  Google Scholar 

  • Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK, Bennett MVL, Spray DC, Willecke K (1989) Differential expression of three gap junction protein in developing and mature brain tissues. Proc Natl Acad Sci USA 86: 10148–10152

    Article  PubMed  CAS  Google Scholar 

  • Erzurumlu RS, Jhaveri S (1992) Emergence of connectivity in the embryonic rat parietal cortex. Cereb Cortex 2: 336–352

    Article  PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL, Pallas SL (1989) Control of cell number in the developing mammalian visual system. Prog Neurobiol 32: 207–234

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL, Slattery M (1983) Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219: 1349–1351

    Article  PubMed  CAS  Google Scholar 

  • Fishell G, Hatten M (1991) Astrotactin provides a receptor system for CNS neuronal migration. Development 113: 755–765

    PubMed  CAS  Google Scholar 

  • Fishell G, Mason CA, Hatten ME (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362: 636–638

    Article  PubMed  CAS  Google Scholar 

  • Fulton BP (1995) Gap junctions in the developing nervous system. Persp Dev Neurobiol 2: 327–334

    CAS  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cell, Embryos, and Evolution. Blackwell, London

    Google Scholar 

  • Ghosh A, Greenberg ME (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15: 89–103

    Article  PubMed  CAS  Google Scholar 

  • Goodall H, Maro B (1986) Major loss of junctional coupling during mitosis in early chick embryos. J Cell Biol 100: 568–575

    Article  Google Scholar 

  • Goodwin BC, Cohen MH (1969) A phase-shift model for the spatial and temporal organization of developing systems. J Theor Biol 25: 49–107

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Takahashi T, Miyama S, Bhide P, Caviness V (1997) The effect of a gap junction uncoupling agent, 1-Octanol, on cell cycle in vitro in the neocortical proliferative epithelium. Soc Neurosci Abst 23: 867

    Google Scholar 

  • Goto T, Takahashi T, Miyama T, Bhide P, Caviness V (1998) Gap junctions exert a developmentally regulated mitogenic effect upon neocortical proliferative epithelium. Soc Neurosci Abst 24: 280

    Google Scholar 

  • Granger B, Tekaia F, Le Sourd A, Rakic P, Bourgeois J-P (1995) Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: comparison with the neocortex. J Comp Neurol 360: 363–376

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S, Butcher M, Lumsden A (1991) Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain. J Neurobiol 22: 742–754

    Article  PubMed  CAS  Google Scholar 

  • Hicks SP, D’Amato CJ (1968) Cell migration to the isocortex in the rat. Anat Rec 160: 619–634

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115: 226–264

    Article  PubMed  CAS  Google Scholar 

  • His W (1889) Die Neuroblasten and deren Entstehung im embryonalen Mark. Abh Math Phys Cl Kgl Saechs Ges Wiss 15: 313–372

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229–289

    PubMed  CAS  Google Scholar 

  • Ingham P, Arias A (1992) Boundaries and fields in early embryos. Cell 68:221–235 Jacobson M ( 1978 ) Developmental Neurobiology. Plenum, New York

    Google Scholar 

  • Killackey HP, Rhoades RW, Bennett-Clarke CA (1995) The formation of a cortical somatotropic map. Trends Neurosci 18: 402–407

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J (1993) Negative regulation of G1 progression in mammalian cells; inhibition of cyclin E-dependent kinase by TGF-1. Science 260: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Kornack D, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci (USA) 95: 1242–1246

    Article  CAS  Google Scholar 

  • Krieg WJS (1963) Connections of the Cerebral Cortex. Brain Books, Chicago Krubitzer L (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci 18: 408–417

    Google Scholar 

  • Lavdas A, Blue M, Lincoln J, Parnavelas J (1997) Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex. J Neurosci 17: 7872–7880

    PubMed  CAS  Google Scholar 

  • Lavdas A, Grigoriou M, Pachnis V, Parnavelas J (1998) The medial ganglionic eminence is a source of the early neurons of the developing cerebral cortex. Soc Neurosci Abst 24: 282

    Google Scholar 

  • Lorente de No R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (eds), Physiology of the Nervous System, Oxford University Press, London, pp 274–313

    Google Scholar 

  • Lo Turco JJ, Kriegstein A (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252: 563–566

    Article  PubMed  Google Scholar 

  • Lo Turco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15: 1287–1298

    Article  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends in Neuroscience 3: 329–335

    Article  Google Scholar 

  • Luskin MB, Shatz CJ (1985) Neurogenesis of the cat’s primary visual cortex. J Comp Neurol 242: 611–631

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Geijo E, Sanchez-Vives M, Puelles L, Gallego R (1992) Reduced junctional permeability at interrhombomeric boundaries. Development 116: 1069–1076

    PubMed  CAS  Google Scholar 

  • Massague J, Polyak K (1995) Mammalian antiproliferative signals and their targets. Curr Opin Gen Dev 5: 91–96

    Article  CAS  Google Scholar 

  • McConnell SK (1989) The determination of neuronal fate in the cerebral cortex. Trends Neurosci 12: 342–349

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254: 282–285

    Article  PubMed  CAS  Google Scholar 

  • McSherry GM (1984) Mapping of cortical histogenesis in the ferret. J Embryol Exp Morphol 81: 239–252

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1998) From Sensation to cognition. Brain 121: 1013–1052

    Article  PubMed  Google Scholar 

  • Mione M, Cavanagh J, Harris B, Parnavelas J (1997) Cell fate specification and symmetrical/ asymmetrical divisions in the developing cerebral cortex. J Neurosci 17: 2018–2029

    PubMed  CAS  Google Scholar 

  • Mione MC, Danevic C, Boardman P, Harris B, Parnavelas JG (1994) Lineage analysis reveals neurotransmitter ( GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J Neurosci 14: 107–123

    Google Scholar 

  • Miyama S, Takahashi T, Nowakowski R, Caviness V (1997) A Gradient in the duration of the G1 phase in the murine neucortical proliferative epithelium. Cereb Cortex 7: 678–689

    Article  PubMed  CAS  Google Scholar 

  • Molnar Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18: 389–397

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1978) The Mindful Brain: Part I. MIT Press, Cambridge, MA

    Google Scholar 

  • Murray A, Hunt T (1993) The Cell Cycle. WH Freeman, New York

    Google Scholar 

  • Northcutt RG, Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18: 373–379

    Article  PubMed  CAS  Google Scholar 

  • Nowakowski R, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Ohsugi K, Gardiner D, Bryant S (1997) Cell cycle length affects gene expression and pattern formation in limbs. Devel Biol 189: 13–21

    Article  CAS  Google Scholar 

  • Parnavelas J, Barfield JA, Franke E, Luskin MB (1991) Separate progenitor cells give rise to pyramidal and non pyramidal neurons in the rat telencephalon. Cerebr Cortex 1: 463–468

    Article  CAS  Google Scholar 

  • Polleux F, Dehay C, Moraillon B, Kennedy H (1997) Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J Neurosci 17: 7763–7783

    PubMed  CAS  Google Scholar 

  • Puelles L, Rubenstein J (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16: 472–479

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1976) Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of visual cortex in Rhesus monkey. Exp Brain Res Suppl 1: 244–248

    Google Scholar 

  • Rakic P (1982) Early development events: cell lineages, acquisition of neuronal positions and areal and laminar development. Neuronsci Res Prog Bull 20: 439–452

    CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1995a) Corticogenesis in human and nonhuman primates. In: Gazzaniga MS (eds), The Cognitive Neurosciences, MIT Press, Cambridge, pp 127–145

    Google Scholar 

  • Rakic P (1995b) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Rhee J, Raballo R, Schwartz M, Vaccarino F (1998) Lineage and non-lineage specific effects of fibroblast growth factor (FGF2) on progenitor cells in the developing cerebral cortex. Soc Neurosci Abst 24: 281

    Google Scholar 

  • Roberts J, Koff A, Polyak K, Firpo E, Collins S, Ohtsubo M, Massague J (1994) Cyclins, cdks and cyclin kinase inhibitors. Cold Spring Harbor Symp Quant Biol 59: 31–38

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Horns RW, Powell TPS (1980) The basic uniformity of structure of the neocortex. Brain 103: 221–244

    Article  PubMed  CAS  Google Scholar 

  • Sanides F (1972) Representation in the cerebral cortex and its areal lamination patterns. In: Boume GF (eds), The Structure and Function of Nervous Tissue V Structure III and Physiology III, Academic Press, New York, pp 330–453

    Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62: 377–405

    Article  Google Scholar 

  • Sauer FC (1936) The interkinetic migration of embryonic epithelial nuclei. J Morphol 60:1–11 Sauer FC (1937) Some factors in the morphogenesis of vertebrate embryonic epithelia. J Morphol 61: 563–579

    Google Scholar 

  • Sauer ME, Walker BE (1959) Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Ext Biol NY. 101: 557–560

    CAS  Google Scholar 

  • Shermoen A, O’Farrell P (1991) Progression of the cell cycle through mitosis leads to a abortion of nascent transcripts. Cell 67: 303–310

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1993) Mammalian GI cyclins. Cell 73: 1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1994) GI phase progression: cycling on cue. Cell 79: 551–555

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Shimamura K, Hartigan D, Martinez S, Puelles L, Rubenstein J (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121: 3923–3933

    PubMed  CAS  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62: 1–35

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds), Histology and histopathology of the neurons system, Charles C Thomas, Springfield, pp 3–145

    Google Scholar 

  • Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 131: 415–442

    Google Scholar 

  • Smart IHM, Smart M (1982) Growth patterns in the lateral wall of the mouse telencephalon. I. autoradiographic studies of the histogenesis of the iso-cortex and adjacent areas. J Anat 134: 273–298

    Google Scholar 

  • Stensaas LJ, Stensaas SS (1968) An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo. Z Zellforsch 91: 341–365

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Goto T, Miyama S, Nowakowski R, Caviness V (1990a) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19: 10357–10371

    Google Scholar 

  • Takahashi T, Nowakowski R, Caviness V (1992) BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J Neurocytol 21: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski R, Caviness V (1995) The cell cycle of the pseudostratified ventricular epithelium of the murine cerebral wall. J Neurosci 15: 6046–6057

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski R, Caviness V (1996a) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general computational model of neocortical neuronogenesis. J Neurosci 16: 6183–6196

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski R, Caviness V (1996b) Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J Neurosci 16: 5762–5776

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski R, Caviness V (1997) The mathematics of neocortical neuronogenesis. Dev Neurosci 19: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski R, Caviness VS (1999b) Cell cycle as operational unit of neocortical neurogenesis. Neuroscientist 5: 155–163

    Article  Google Scholar 

  • Tan S-S, Kalloniatis M, Sturm K, Tam P, Reese B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral cortex. Neuron 21: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Temple S, Qian X (1995) bFGF, neurotrophins, and the control of cortical neurogenesis. Neuron 15: 249–252

    Google Scholar 

  • Thomaidou D, Mione M, Cavanagh J, Parnavelas J (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17: 1075–1085

    PubMed  CAS  Google Scholar 

  • Touchette N (1992) pRb and the cell cycle: more than meets the eye: J NIH Res 4:56–59

    Google Scholar 

  • Vaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J,Wyland J, Yu-Ting E (1999) Changes in the size of the cerebral cortex are governed by fibroblast growth factor during embryogenesis. Nat Neurosci 2: 246–253

    Article  PubMed  Google Scholar 

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences 6: 370–375

    Article  Google Scholar 

  • Waechter RV, Jaensch B (1972) Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res 46: 235–250

    Article  Google Scholar 

  • Walsh C, Cepko C (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362: 632–635

    Article  PubMed  CAS  Google Scholar 

  • Weinberg R (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330 Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25: 1–47

    Google Scholar 

  • Wolpert L (1978) Gap junctions: channels for communication in development. In: Feldman J, Gilula NB, Pitts JD (eds), Intercellular junctions and synapses (Receptors and Recognition, Series B), Chapman and Hall, London, pp 83–96

    Google Scholar 

  • Woodward WR, Chiaia N, Teyler TJ, Leong L, Coull BM (1990) Organization of cortical afferent and efferent pathways in the white matter of the rat visual system. Neuroscience 36: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Zilles K (1990) Cortex. In: Paxinos G (eds), The human nervous system. Academic Press, Inc,New York, pp 757–802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caviness, V.S., Takahashi, T., Nowakowski, R.S. (2000). Neuronogenesis and the Early Events of Neocortical Histogenesis. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics