Advertisement

Metallic Nanocrystals and Their Dynamical Properties

  • Jens-Boie Suck
Chapter
  • 1k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 93)

Abstract

Metallic nanocrystals have numerous technical applications, especially because of their favourable magnetic and mechanical properties, surpassing often by far those of the corresponding polycrystals. As applies to most of the nano-materials, their importance in applications will grow further and wider in the years to come.

Because of their small extension of only a few nm in all or some of their dimensions, the properties of nanocrystals are generally characterized by two main facts: a competition of length scales due to the fact that their extension is smaller than some physical relevant length scale like e.g. the correlation length, screening length, free path length. For small nanocrystals, the network of grain boundaries between the crystallites can occupy up to 50% of the sample volume and thus there is a strong influence of the network of grain boundaries on the overall properties of nanocrystalline materials.

After an introduction into the production and characterization methods of metallic nanocrystals and some characteristic properties of their grain boundary network, in this lecture the consequences of both of the two characteristic facts just mentioned for some of the properties of (mainly fcc) metallic nanocrystals are discussed: the melting temperature, the magnetic and the mechanical properties and finally in detail their atomic dynamics.

Keywords

High Resolution Transmission Electron Microscopy Metallic Glass High Resolution Transmission Electron Microscopy Grain Boundary Stack Fault Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Siegel: Synthesis and Processing of Nanostructured Materials. In: Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures, NATO ASI Series, Series E: Appl.Sci. vol 233), ed. by M. Nastasi, D.M. Parkin, H. Gleiter (Kluver, Dordrecht 1993) pp 509–538Google Scholar
  2. 2.
    R.W. Siegel: Physics Today 46 64 (1993)Google Scholar
  3. 3.
    Materials Today 9 1–64 (2006)Google Scholar
  4. 4.
    http://www.aspbs.comGoogle Scholar
  5. 5.
    T. Ahmia: die Tageszeitung 7970 17 (2006)Google Scholar
  6. 6.
    J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk: Mater. Sci. Engineer. A 393 1 (2005)CrossRefGoogle Scholar
  7. 7.
    http://www.k-zeitung.de April (2006)Google Scholar
  8. 8.
    http://www.heise.de: c’t 9 20 (2006)Google Scholar
  9. 9.
    Mater. Magn. Data Storage 31 vol.5Google Scholar
  10. 10.
    H. Chander: Mater. Sci. Engineer. R 49 113 (2005)CrossRefGoogle Scholar
  11. 11.
    VDI-Nachrichten 3.2.06Google Scholar
  12. 12.
    http://www.baulinks.de/webplugin/2006/Google Scholar
  13. 13.
    M.E. McHenry, D.E. Laughlin: Acta Mater. 48 223 (2000)CrossRefGoogle Scholar
  14. 14.
    http://nano.cancer.gov/news-center/Google Scholar
  15. 15.
    Angw.Chem.Intern.Ed. 45 3165 (2006)Google Scholar
  16. 16.
    D. Geho et al.: Bioconjugate Chem. 17 654 (2006)CrossRefGoogle Scholar
  17. 17.
    J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan: Anal. Chem. 78 2918 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Altmann: Military Nanotechnology: Potential applications and preventive arms controll (Abingdon New York 2006)Google Scholar
  19. 19.
    J. Altmann, M.A. Gubrud: Military, Arms Control, and Security Aspects of Nanotechnology. In: Discovering the Nanoscale, ed. D. Baird (Amsterdam 2004) pp 269–277Google Scholar
  20. 20.
    http://idw-online.de/pages/de/news159009Google Scholar
  21. 21.
    CRN Global Task Force on Implication and Technology April (2006)Google Scholar
  22. 22.
    Nanotechnology, Assessment and Perspectives ed. by G. Schmidt et al. (Springer, Berlin 2006)Google Scholar
  23. 23.
    http://allpr.de/43180Google Scholar
  24. 24.
    http://www.pressetext.ch/pte.mc?pte=060506002Google Scholar
  25. 25.
    http://www.handelsblatt.de/pshb/fn/relhbi/sfn/buildhbi/cn/Google Scholar
  26. 26.
    Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (Academic Press, London, San Diego 2004)Google Scholar
  27. 27.
    H. Mori, H. Yasuda: Mater. Sci. Forum 269–272 327 (1998)Google Scholar
  28. 28.
    J. Schiotz: Mater. Sci. Engin. A 375–377 975 (2004)CrossRefGoogle Scholar
  29. 29.
    G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, N.D. Browning: Scripta Mater. 54 2137 (2006)CrossRefGoogle Scholar
  30. 30.
    Q. Wei, S. Cheng, K.T. Ramesh, E. Ma: Mater. Sci. Engineer. A 381 71 (2004)CrossRefGoogle Scholar
  31. 31.
    A. Inoue: Adv. Engin. Mater. 3 669 (2001)CrossRefGoogle Scholar
  32. 32.
    K. Lu, R. Lück, B. Predel: Acta Metall. Mater 42 2303 (1994)CrossRefGoogle Scholar
  33. 33.
    C.E. Krill, R. Birringer: Mater. Sci. Forum 225–227 263 (1996)Google Scholar
  34. 34.
    D.A. Konstantinidis, E.C. Aifantis: Nanostr. Mater. 10 1111 (1998)CrossRefGoogle Scholar
  35. 35.
    U. Herr, J. Jing, R. Birringer, U. Gonser, H. Gleiter: Appl. Phys. Lett. 50 472 (1987)CrossRefGoogle Scholar
  36. 36.
    H. Gleiter: Acta mater. 48, 1 (2000)CrossRefGoogle Scholar
  37. 37.
    A. Inoue, A. Takeuchi: Mater. Sci. Engin. A 375–377 16 (2004)CrossRefGoogle Scholar
  38. 38.
    A.L. Greer: Thermodynamics of Nanostructured Materials. In: Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures, NATO ASI Series, Series E, Appl.Sci. vol 233, ed. by M. Nastasi, D.M. Parkin, H. Gleiter (Kluver, Dordrecht 1993) pp 53–77Google Scholar
  39. 39.
    A.L. Greer: Mater. Sci. Forum 279–272 3 (1998)Google Scholar
  40. 40.
    A.L. Greer: Physical Phenomena in Fine Layered Structures. Chap.12 in: Comprehensive Composit Materials, ed. by A. Kelly, C. Zweben vol 3 Metal-Matrix Composits, ed. T.W. Clyne (Elsevier Amsterdam 2000) pp 321–340Google Scholar
  41. 41.
    Y. Yoshizawa, K. Yamauchi: Mater. Transact. JIM 31 307 (1990)Google Scholar
  42. 42.
    T. Spassov, P. Solsona, S. Surinach, M.D. Baro: J. Alloys and Compounds 345 123 (2002)CrossRefGoogle Scholar
  43. 43.
    H. Gleiter: Nanometer-sized Materials In: Encyclopedia of Physical Science and Technology, 1991 Yearbook (Academic Press 1991) pp. 375–389Google Scholar
  44. 44.
    http://www.pvd-coatings.co.uk/theory-of-pvd-coatings-magnetronsputtering.htmGoogle Scholar
  45. 45.
    H. Natter, R. Hempelmann: Electrochem. Acta 49 51 (2003)CrossRefGoogle Scholar
  46. 46.
    K. Tomantschger, G. Palumbo, F. Gonzales, H. Natter, R. Hempelmann, F. Endres, U. Erb, K.T. Aust: Electrochemical Synthesis of Nanocrystalline Materials In: Jahrbuch Oberflchentechnik 2004, ed. by R. Suchentrunk (Eugen G. Leuze Verlag, Bad Saulgau 2004) pp 23–43Google Scholar
  47. 47.
    A. Giga, Y. Kimoto, Y. Takigawa, K. Higashi: Scrip. Mater. 55 143 (2006)CrossRefGoogle Scholar
  48. 48.
    J. Rawers, D. Cook: Nano Struct. Mater. 11 331 (1999)CrossRefGoogle Scholar
  49. 49.
    Y.T. Feng, K. Han, D.R.J. Owen: Mater. Sci. Engineer. A 375–377 815 (2004)CrossRefGoogle Scholar
  50. 50.
    P. Pochet, P. Bellon, L. Chaffron, G. Martin: Mater. Sci. Forum 225–227 207 (1996)Google Scholar
  51. 51.
    K. Suzuki, K. Sumiyama: Mater. Trans. JIM 36 188 (1995)Google Scholar
  52. 52.
    Z. Wang, A.L. Fan, W.h. Tian, Y.T. Wang, X.G. Li: Mater. Lett.60 2227 (2006)CrossRefGoogle Scholar
  53. 53.
    K. Lu, J.T. Wang, W.D. Wei: J. Appl. Phys. 69 522 (1991). K. Lu: Mater. Sci. Engin. R 16 161–221 (1996)CrossRefGoogle Scholar
  54. 54.
    A.L. Greer: Nanocrystals Obtained from Devitrification. In: Nanostructured Materials, Science and Technology ed. by G.-M. Chow, N.I. Noskova (Cluver, Dordrecht 1998) pp 143–162Google Scholar
  55. 55.
    G. Wilde, N. Boucharat, R.J. Hebert, H. Rösner, W.S. Tong, J.H. Perepezko: Adv. Engin. Mater. 5 125 (2003)CrossRefGoogle Scholar
  56. 56.
    S. Surinach, E. Illekova, M.D. Baro, A. Jha, S. Jordery, M. Poulain, A. Soufiane, E.R. Taylor, D.N. Payne: Evaluation of Crystal Nucleation and Growth from Crystallization Kinetics Data of New Fluoride Glasses. In: Nanostructured andNon-Crystalline Materials ed. by M. Vazquez, A. Hernando (World Scientific, Singapore, New Jersey, London, Hong Kong 1995) pp 352–356Google Scholar
  57. 57.
    U. Köster, R. Janlewing: Mater. Sci. Engineer. 375–377 223 (2004)CrossRefGoogle Scholar
  58. 58.
    D. Jacovkis, J. Rodriguez-Viejo, M.T. Clavaguera-Mora: J. Phys.: Condens. Matter 17 4897 (2005)CrossRefGoogle Scholar
  59. 59.
    Y.B. Wang, H.W. Yang, B.B. Sun, B. Wu, J.Q. Wang, M.L. Sui, E. Ma: Scripta Mater. 55 469 (2006)CrossRefGoogle Scholar
  60. 60.
    I. Bokonyi, A. Cziraki: Nanostr. Mater. 11 9 (1999)CrossRefGoogle Scholar
  61. 61.
    H. Van Swygenhoven: Science 296 66 (2002)CrossRefGoogle Scholar
  62. 62.
    G.Z. Voronoi: J. Reine Angew. Math. 134 199 (1908)Google Scholar
  63. 63.
    S. Enzo: Mater. Sci. Forum 269–272 363 (1998)Google Scholar
  64. 64.
    C.E. Krill, R. Haberkorn, R. Birringer: Specification of Microstructures and Characterization by Scattering techniques. In: Handbook of Nanostructured. Materials and Nanotechnology, ed. by H.S. Nalwa (Academic Press, London, San Diego 2000) pp 155–212Google Scholar
  65. 65.
    L.S. Birks, M. Friedman: J. Appl. Phys. 17 686 (1946)CrossRefGoogle Scholar
  66. 66.
    B.E. Warren, B.L. Averbach: J. Appl. Phys. 23 1059 (1952)CrossRefGoogle Scholar
  67. 67.
    P. Chieux: Liquid Structure Investigation by Neutron Scattering In: Neutron Diffraction, Topics in Current Physics, vol 6, ed. by H. Dachs (Springer, Berlin Heidelberg 1978) pp 271–302Google Scholar
  68. 68.
    M. Lentzen, B. Jahnen, C.L. Jia, A. Thust, R.G.E. Tillmann, K. Urban: Ultramicroscopy 92 233 (2002)CrossRefGoogle Scholar
  69. 69.
    C.L. Jia, M. Lentzen, K. Urban: Microscopy and Microanal. 10 174 (2004)CrossRefGoogle Scholar
  70. 70.
    R. Tillmann, A. Thust, A. Gerber, M. Weides, K. Urban: Microscopy and Microanal. 11 534 (2005)CrossRefGoogle Scholar
  71. 71.
    S. Mentese, F. Juranyi, M. Scheffer, L.T. Hung, J.-B. Suck, G. Cuello in Sci.Metastab.and Nanocryst.Alloys, Structure, Properties and Modelling ed. by A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schrøder Pedersen, J.A. Werth (Risø Nat.Lab., Roskilde 2001) p. 329Google Scholar
  72. 72.
    H. Frase, L.J. Nagel, J.L. Robertson, B. Fultz: Phil. Mag B 75 335 (1997)Google Scholar
  73. 73.
    T. Haubold, R. Birringer, B. Lengeler, H. Gleiter: Phys. Lett. A 135 461 (1989)CrossRefGoogle Scholar
  74. 74.
    G. Le Caer, P. Delcroix, J. Foct: Mater. Sci. Forum 269–272 409 (1998)Google Scholar
  75. 75.
    S. Trapp, C.T. Limbach, U. Gonser, S.J. Campbell, H. Gleiter: Phys. Rev. Lett. 75 3760 (1995)CrossRefGoogle Scholar
  76. 76.
    C.J. Chen: Introduction to Scanning Tunneling Microscopy,(Oxford University Press, New York 1993)Google Scholar
  77. 77.
    R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy, (Cambridge University Press 1994)Google Scholar
  78. 78.
    Z. Osvath, G. Vertesi, L. Tapaszto, F. Weber, Z.E. Horvath, J. Gyulai, L.P. Biro: Mater. Sci. Engineer. C 26 1194 (2006)CrossRefGoogle Scholar
  79. 79.
    http://www.eng.uc.edu/gbeaucag/Class/Analysis/Chapt8.htmlGoogle Scholar
  80. 80.
    Modern Aspects of Small Angle Scattering, NATO ASI Series C: Mathematical and Physical Sciences, vol 451, ed. by H. Brumberger (Kluver Academic Publishers, Dordrecht, Boston, London 1995)Google Scholar
  81. 81.
    http://www.isis.rl.ac.uk/largescale/loq/documents/sans.htmGoogle Scholar
  82. 82.
    C. Williams, R.P. May, A. Guinier: Small Angle Scattering of X-Rays and Neutrons, In: Characterization of Materials, Material Science and Technology, vol 28, ed. by E. Lifshin (VCH Verlags Gesellschaft Weinheim 1994) pp 611–656Google Scholar
  83. 83.
    M.I. Sui, K. Lu, W. Deng, L.Y. Xiong, S. Patu, Y.Z. He: Phys. Rev. B 44 6466 (1991)CrossRefGoogle Scholar
  84. 84.
    Z.F. Dong, K. Lu, I. Bokonyi: Nanaostruct. Mater. 11 187 (1999)CrossRefGoogle Scholar
  85. 85.
    U. Herr: Adv. Engin. Mater. 3 889 (2001)CrossRefGoogle Scholar
  86. 86.
    B. Fultz, H. Kuwano, H. Ouyang: J. Appl. Phys. 77 3458 (1995)CrossRefGoogle Scholar
  87. 87.
    A. Caro, H. Van Swygenhoven: Phys. Rev. B 63 134101 (2001)CrossRefGoogle Scholar
  88. 88.
    H. Van Swygenhoven, D. Farkas, A. Caro: Phys. Rev B 62 831 (2000)CrossRefGoogle Scholar
  89. 89.
    Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma et al.: J. Mat. Research 18 1908 (2003)CrossRefGoogle Scholar
  90. 90.
    J.A. Eastman, M.R. Fitzsimmons: J. Appl. Phys. 77 522 (1995)CrossRefGoogle Scholar
  91. 91.
    R.Z. Valiev, E.V. Kozlov, Y.F. Yvanov, J. Lian, A.A. Nazarov, B. Baudelet: Acta Metall. Mater. 42 2467 (1994)CrossRefGoogle Scholar
  92. 92.
    S. Veprek, Z. Iqbal, H.R. Oswald, A.P. Webb: J. Phys. C 14 295 (1981)CrossRefGoogle Scholar
  93. 93.
    D. Wolf, J. Wang, S.R. Phillpot, H. Gleiter: Phys. Lett. A 205 274 (1995)CrossRefGoogle Scholar
  94. 94.
    S.-N. Luo, L. Zheng, O. Tschauner: Solid State Comm. 136 71 (2005)Google Scholar
  95. 95.
    T.D. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, J.G. Huang: J. Mat. Res. 10 139 (1995)Google Scholar
  96. 96.
    M. Chauhan, F.A. Mohamed: Mater. Sci. Engineer. A 427 7 (2006)CrossRefGoogle Scholar
  97. 97.
    K. Lu, R. Lück, B. Predel: Scrip. Metall. Mater. 28 1387 (1993)CrossRefGoogle Scholar
  98. 98.
    K. Lu, R. Lück, B. Predel: Mater. Sci. Engin. A 179 536 (1994)CrossRefGoogle Scholar
  99. 99.
    H.J. Fecht: Phys. Rev. Lett. 65 610 (1990)CrossRefGoogle Scholar
  100. 100.
    M. Wagner: Acta Metall. Mater. 40 957 (1992)CrossRefGoogle Scholar
  101. 101.
    A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, H. Gleiter: Mater. Sci. Engin. A 318 293 (2001)CrossRefGoogle Scholar
  102. 102.
    D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot: Phys. Rev. Lett. 89 206101 (2002)CrossRefGoogle Scholar
  103. 103.
    J. Chadwick: J. Phys.: Condensed Matt. 11 129 (1999)CrossRefGoogle Scholar
  104. 104.
    Ph. Buffat, J.-P. Borel: Phys. Rev. A 13, 2287 (1976)CrossRefGoogle Scholar
  105. 105.
    A.N. Goldstein, C.M. Echer, A.P. Alivisatos: Science 256 1425 (1992)CrossRefGoogle Scholar
  106. 106.
    K.K. Nanda, S.N. Sahu, S.N. Behera: Phys. Rev. A 66 013208 (2002)CrossRefGoogle Scholar
  107. 107.
    W.H. Qi: Physica B 368 46 (2005)CrossRefGoogle Scholar
  108. 108.
    W.H. Qi, M.P. Wang, M. Zhou, X.Q. Shen, X.F. Zhang: J. Phys. Chem. Solids 67 851 (2006)CrossRefGoogle Scholar
  109. 109.
    M.E. McHenry, D.E. Laughlin: Acta mater. 48 223 (2000)CrossRefGoogle Scholar
  110. 110.
    A.K. Menon, B.K. Gupta: Nanostruc. Mater. 12 1117 (1999)CrossRefGoogle Scholar
  111. 111.
    A. Hernando: europhys. news 34 232 (2003)CrossRefGoogle Scholar
  112. 112.
    K. Twarowski, M. Kuzminski, A. Slawska-Waniewska, H.K. Lachowicz, G. Herzer: On the Origin of Effective Linear Magnetostriction in FeCuNbSiB Nanocrystalline Alloys. In: Nanostructured and Non-Crystalline Materials, ed. by M. Vazquez, A. Hernando (World Scientific, Singapore, New Jersey, London, Hong Kong 1995) pp 495Google Scholar
  113. 113.
    G. Herzer: J. Mag. Mag. Mater. 157–158 133 (1996)CrossRefGoogle Scholar
  114. 114.
    G. Herzer: Nanocrystalline Soft Magnetic Alloys. In: Handbook of Magnetic. Materials Vol. 10 ed. by K.H.J. Buschow (Elsevier, Amsterdam 1997) pp 415–462Google Scholar
  115. 115.
    G. Herzer: IEEE Transact. Magnet. 25 3327 (1989)CrossRefGoogle Scholar
  116. 116.
    A. Slawska-Waniewska, M. Grafoute, J.M. Greneche: J. Phys.: Condensed Matt. 18 2235 (2006)CrossRefGoogle Scholar
  117. 117.
    G. Herzer: Mater. Sci. Engineer A 133 1 (1991)CrossRefGoogle Scholar
  118. 118.
    A. Bahrami, H.R. Madaah Hosseini, P. Abachi, S. Miraghaei: Mater. Lett. 60 1068 (2006)CrossRefGoogle Scholar
  119. 119.
    R. Alben, J.J. Becker, M.C. Chi: J. Appl. Phys. 49 1653 (1978)CrossRefGoogle Scholar
  120. 120.
    J.F. Löffler, H.-B. Braun, W. Wagner: Phys. Rev. Lett. 85 1990 (2000)CrossRefGoogle Scholar
  121. 121.
    J.F. Löffler, W. Wagner, G. Kostorz: J. Appl. Cryst. 33 451 (2000)CrossRefGoogle Scholar
  122. 122.
    J.R. Weertman: Mechanical Behaviour of Nanocrystalline Metals in Nanostructured. Materials: Processing, Properties and Potential Applications, (William Andrew, Norwich, New York 2002)Google Scholar
  123. 123.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: nature materials 1 45 (2002)CrossRefGoogle Scholar
  124. 124.
    K.W. Jacobsen, J. Schiotz: nature materials 1 15 (2002)CrossRefGoogle Scholar
  125. 125.
    Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt: Science 304 273 (2004)CrossRefGoogle Scholar
  126. 126.
    H. Van Swygenhoven, P.M. Derlet, A. Hasuaoui: Phys. Rev. B 66 024101 (2002)CrossRefGoogle Scholar
  127. 127.
    J. Schiotz, K.W. Jacobsen: Science 301 1357 (2003)CrossRefGoogle Scholar
  128. 128.
    E.O. Hall: Proc. Phys. Soc. London B 64 747 (1951)CrossRefGoogle Scholar
  129. 129.
    N.J. Petch: J. Iron Steel Inst. 174 25 (1953)Google Scholar
  130. 130.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: nature materials 3 43 (2004)CrossRefGoogle Scholar
  131. 131.
    J. Chen, L. Lu, K. Lu: Script. Mater. 54 1913 (2006)CrossRefGoogle Scholar
  132. 132.
    S. Yip: Nature 391 532 (1998)CrossRefGoogle Scholar
  133. 133.
    J. Schiotz, F.D. Di Tolla, K.W. Jacobsen: Nature 391 561 (1998)CrossRefGoogle Scholar
  134. 134.
    S. Yip: nature materials 3 11 (2004)CrossRefGoogle Scholar
  135. 135.
    H. Van Swygenhoven, P.M. Derlet, A.G. Froseth: nature materials 3 399 (2004)CrossRefGoogle Scholar
  136. 136.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: Phil. Mag. Lett. 83 385 (2003)Google Scholar
  137. 137.
    H. Van Swygenhoven, M. Spaczer, A. Caro: Acta Mater. 47 3117 (1999)CrossRefGoogle Scholar
  138. 138.
    H. Van Swygenhoven, P.M. Derlet: Phys. Rev. B 64 224105 (2001)CrossRefGoogle Scholar
  139. 139.
    R.L.A. Coble: J. App. Phys. 34 1679 (1963)CrossRefGoogle Scholar
  140. 140.
    H. Van Swygenhoven, Z. Budrovic, P.M. Derlet, A.G. Froseth, S. Van Petegem: Mat. Sci. Engin. A 400–401 329 (2005)CrossRefGoogle Scholar
  141. 141.
    M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng: Science 300 1275 (2003)CrossRefGoogle Scholar
  142. 142.
    Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao: Science 305 654 (2004)CrossRefGoogle Scholar
  143. 143.
    E. Ma: Science 305 623 (2004)CrossRefGoogle Scholar
  144. 144.
    Y.M. Wang, E. Ma: Mater. Sci. Engineer. 375–377 46 (2004)CrossRefGoogle Scholar
  145. 145.
    Y.M. Wang, A.V. Hamza, E. Ma: Acta Mater. 54 2715 (2006)CrossRefGoogle Scholar
  146. 146.
    B. Zhu, R.S. Asaro, P. Krysl, k. Zhang, J.R. Weertman: Acta Mater. 54 3307 (2006)CrossRefGoogle Scholar
  147. 147.
    Z. Iqbal, S. Veprek: J. Phys. C: Solid State Phys. 15 377 (1982)CrossRefGoogle Scholar
  148. 148.
    P. Verma, L. Gupta, S.C. Abbi, K.P. Jain: J. App. Phys. 88 4109 (2000)CrossRefGoogle Scholar
  149. 149.
    J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman: Phys. Rev. B 64 245047 (2001)CrossRefGoogle Scholar
  150. 150.
    C.H. Shek, G.M. Lin, J.K.L. Lai: Nanostruc. Mater. 11 831 (1999)CrossRefGoogle Scholar
  151. 151.
    M.J. Seong, O.I. Micic, A.J. Nozik, A. Mascarenhas, H.M. Cheong: Appl. Phys. Lett. 82 185 (2003)CrossRefGoogle Scholar
  152. 152.
    M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, K. Furic: Mater. Lett 28 225 (1996)CrossRefGoogle Scholar
  153. 153.
    J.-B. Suck, H. Rudin, H.-J. Güntherodt, H. Beck: J. Phys. C: Solid State Phys. 14 2305 (1981)CrossRefGoogle Scholar
  154. 154.
    P.M. Derlet, R. Meyer, L.J. Lewis, U. Stuhr, H. Van Swygenhoven: Phys. Rev. Lett. 87 205501 (2001)CrossRefGoogle Scholar
  155. 155.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss in Solid State Phys. Suppl. 3 ed. by F. Seiz, D. Turnbull (Academ. Press New York, London 1963)Google Scholar
  156. 156.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova in Solid State Phys. (2nd edit.) ed. by F. Seiz, D. Turnbull (Academ. Press New York, London 1971)Google Scholar
  157. 157.
    R. Singh, S. Prakash: Chinese J. Phys. 40 624 (2002)Google Scholar
  158. 158.
    B. Fultz, J.L. Robertson, T.A. Stephens, L.J. Nagel, S. Spooner: J. App. Phys. 79 8318 (1996)CrossRefGoogle Scholar
  159. 159.
    B. Fultz, C.C. Ahn, E.E. Alp, W. Sturhahn, T.S. Toellner: Phys. Rev. Lett. 79 937 (1997)CrossRefGoogle Scholar
  160. 160.
    H. Frase, B. Fultz, J.L. Robertson: Phys. Rev. B 57 898 (1998)CrossRefGoogle Scholar
  161. 161.
    E. Bonetti, L. Pasquini, E. Sampaolesi, A. Deriu, G. Cicognani: J. Appl. Phys. 88 4571 (2000)CrossRefGoogle Scholar
  162. 162.
    L. Pasquini, A. Barla, A.I. Chumakov, O. Leupold, R. Rüffer, A. Deriu, E. Bonetti: Phys. Rev. B 66 073410 (2002)CrossRefGoogle Scholar
  163. 163.
    S. Mentese, J.-B. Suck, S. Janssen: Physica B 316–317 438 (2002)CrossRefGoogle Scholar
  164. 164.
    D. Wolf, J. Wang, S.R. Phillpot, H. Gleiter: Phys. Rev. Lett. 74 4686 (1995)CrossRefGoogle Scholar
  165. 165.
    J. Wang, D. Wolf, S.R. Phillpot, H. Gleiter: Phil. Mag A 73 517 (1996)Google Scholar
  166. 166.
    A. Kara, T.S. Rahman: Phys. Rev. Lett. 81 1453 (1998)CrossRefGoogle Scholar
  167. 167.
    S. Mentese, J.-B. Suck, O.A. Petrenko unpublishedGoogle Scholar
  168. 168.
    S. Mentese, J-B. Suck, V. Reat: Appl. Phys. A 74 S969 (2002)CrossRefGoogle Scholar
  169. 169.
    J.-B. Suck, H. Bretscher, H. Rudin, P. Grütter, H.-J. Güntherodt: Phys. Rev. Lett. 59 102 (1987)CrossRefGoogle Scholar
  170. 170.
    J.-B. Suck, H.-J. Güntherodt: Icosahedral, Glassy and Crystallise Al75Cu15V10: A Comparative Study of their Generalised Vibrational Density-of-States. In: Phonons 89, ed. by S. Hunklinger, W. Ludwig, G. Weiss (World Scientific, Singapore 1990) p. 573Google Scholar
  171. 171.
    J.-B. Suck: Vibrational Density-of-States of Metastable and Stable Quasicrystalline Alloys. In: Quasicrystals, ed. by J.-B. Suck, M. Schreiber, P. Häussler (Springer, Berlin Heidelberg New York 2002) pp 454Google Scholar
  172. 172.
    D. Korn, A. Morsch, R. Birringer, W. Arnold, H. Gleiter: J. Physique (Paris) 49 C5–769 (1988)Google Scholar
  173. 173.
    D.Y. Sun, X.G. Gong, X.-Q. Wang: Phys. Rev. B 63 193412 (2001)CrossRefGoogle Scholar
  174. 174.
    A. Tamura, K. Higeta, T. Ichinokawa: J. Phys. C: Solid State 15 4975 (1982)CrossRefGoogle Scholar
  175. 175.
    A. Tamura, K. Higeta, T. Ichinokawa: J. Phys. C: Solid State 16 1585 (1983)CrossRefGoogle Scholar
  176. 176.
    A. Tamura, T. Ichinokawa: J. Phys. C: Solid State 16 4779 (1983)CrossRefGoogle Scholar
  177. 177.
    J.J. Burton: J. Chem. Phys. 52 345 (1970)CrossRefGoogle Scholar
  178. 178.
    J.-B. Suck: J. Non-crystall. Solids 153–154 573 (1993)CrossRefGoogle Scholar
  179. 179.
    S. Mentese, J.-B. Suck, A.J. Dianoux: J. Metastab. and Nanocryst. Materials 8 671 (2000)Google Scholar
  180. 180.
    K. Lu, R. Lück, B. Predel: J. Non-Cryst. Solids 156–158 589 (1993)CrossRefGoogle Scholar
  181. 181.
    J. Trampenau, K. Bauszus, W. Petry, U. Herr: Nanostr. Mater. 6 551 (1995)CrossRefGoogle Scholar
  182. 182.
    U. Stuhr, H. Wipf, K.H. Andersen, H. Hahn: Phys. Rev. Lett. 81 1449 (1998)CrossRefGoogle Scholar
  183. 183.
    U. Stuhr, H. Wipf, T.J. Udovic, J. Weißmüller, H. Gleiter: Nanostruc. Mater. 6 555 (1995)CrossRefGoogle Scholar
  184. 184.
    J.-B. Suck, H. Rudin: Vibrational Dynamics of Metallic Glasses Studied by Neutron Inelastic Scattering. In: Glassy Metals II, Topics in Applied Physics 53 ed. by H. Beck, H.-J. Güntherodt (Springer, Berlin Heidelberg New York 1983) pp 217Google Scholar
  185. 185.
    S. Mentese, thesis, University of Technology Chemnitz, Germany 2002Google Scholar
  186. 186.
    J.-B. Suck, S. Mentese, S. Jannsen submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jens-Boie Suck
    • 1
  1. 1.Institute of PhysicsUniversity of Technology ChemnitzChemnitzGermany

Personalised recommendations