Skip to main content

Electronic Structure and Transport for Nanoscale Device Simulation

  • Chapter
  • 1194 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 93))

Summary

In this chapter, we discuss the physical models that are commonly used for the quantum simulation of electronic states and currents in nanostructures. Since most of these structures are too large for an atomistic description, we focus here on continuum models with empirically adjusted material parameters. In specific, after a short introduction into the band structure theory of crystalline solids, we first present the k·p-equations for semiconductors. Next, we discuss the envelope function approximation for heterostructures and consider the effects of elastic deformations and strain. Furthermore, we also examine carrier densities at non-zero temperature and consider the interplay of the Poisson and Schrödinger equation. After describing the electronic structure, we now discuss the Boltzmann equation and the numerically more tractable drift-diffusion equations as semi-classical models for carrier transport in semiconductors. We then extend the drift-diffusion model to take quantum corrections for size quantization into account, and we outline the principles of ballistic quantum transport. Finally, we present nextnano 3, a software package for the simulation of nanostructures that has been developed by the authors, and give an example application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sabathil, D. Mamaluy, P. Vogl: Semicond. Sci. Technol. 19, S137 (2004)

    Article  CAS  Google Scholar 

  2. P.Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, Berlin Heidelberg New York 1996)

    Google Scholar 

  3. The nextnano 3 simulation package and example input files can be downloaded from http://www.wsi.tum.de/nextnano3/

    Google Scholar 

  4. J.A. Majewski, A. Trellakis, P. Vogl et al.: physica status solidi (c) 1, 2003 (2004)

    Article  CAS  Google Scholar 

  5. P. Löwdin: J. Chem. Phys. 19, 1396 (1951)

    Article  Google Scholar 

  6. J.M. Luttinger, W. Kohn: Phys. Rev. 97, 869 (1955)

    Article  CAS  Google Scholar 

  7. G. Dresselhaus, A.F. Kip, C. Kittel: Phys. Rev. 98, 368 (1955)

    Article  CAS  Google Scholar 

  8. C.R. Pidgeon, R.N. Brown: Phys. Rev. 146, 575 (1966)

    Article  CAS  Google Scholar 

  9. G. Bastard: Phys. Rev. B 24, 5693 (1981)

    Article  CAS  Google Scholar 

  10. E.O. Kane: The k·p method. In: Semiconductors and Semimetals: III—V compounds, vol. 1, ed by R.K. Willardson, A.C. Beer (Academic Press, New York 1966) pp. 75–100

    Google Scholar 

  11. M.G. Burt: J. Phys.: Condens. Matter 4, 6651 (1992)

    Article  Google Scholar 

  12. M.G. Burt: J. Phys.: Condens. Matter 11, R53 (1999)

    Article  CAS  Google Scholar 

  13. T.B. Bahder: Phys. Rev. B 41, 11992 (1990)

    Article  Google Scholar 

  14. R. Lake et al: J. Appl. Phys. 81, 7845 (1997)

    Article  CAS  Google Scholar 

  15. S. Datta: Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge 1997)

    Google Scholar 

  16. D.K. Ferry, S.M. Goodnick: Transport in Nanostructures, (Cambridge University Press, Cambridge 2000)

    Google Scholar 

  17. S. Hackenbuchner: Elektronische Struktur von Halbleiter-Nanobauelementen im thermodynamischen Nichtgleichgewicht. Ph.D. Thesis, TU München, München (2002)

    Google Scholar 

  18. M. Sabathil, S. Hackenbuchner, P. Vogl et al.: J. Comp. Electronics 1, 81 (2002)

    Article  CAS  Google Scholar 

  19. K. Kim, O. Kwon, A. Trellakis et al.: J. Korean Phys. Soc. 45, S909 (2004)

    CAS  Google Scholar 

  20. M. Sabathil, S. Birner, P. Vogl et al.: J. Comp. Electronics 2, 269 (2003)

    Article  CAS  Google Scholar 

  21. R. Landauer: Phys. Scr., T 42, 110 (1992)

    Article  Google Scholar 

  22. M. Büttiker: IBM J. Res. Dev. 32, 317 (1988)

    Article  Google Scholar 

  23. A. Di Carlo, P. Vogl: Phys. Rev. B 50, 8358 (1994)

    Article  Google Scholar 

  24. D. Mamaluy, M. Sabathil, P. Vogl: Phys. Rev. B 93, 4628 (2003)

    CAS  Google Scholar 

  25. L.N. Trefethen, D. Bau III: Numerical Linear Algebra, (SIAM Society for Industrial & Applied Mathematics, Philadelphia 1997)

    Google Scholar 

  26. A. Trellakis et al: J. Appl. Phys. 81 7880 (1997)

    Article  CAS  Google Scholar 

  27. M. Povolotskyi, A. Di Carlo, P. Vogl et al.: IEEE Trans. Nanotechnol. 3, 124 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trellakis, A., Vogl, P. (2007). Electronic Structure and Transport for Nanoscale Device Simulation. In: Gemming, S., Schreiber, M., Suck, JB. (eds) Materials for Tomorrow. Springer Series in Materials Science, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47971-0_5

Download citation

Publish with us

Policies and ethics