Skip to main content

Simulation of Inorganic Nanotubes

  • Chapter
Materials for Tomorrow

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 93))

Summary

Motivated by the high application potential of carbon nanotubes, the search for other quasi one-dimensional nanostructures has been pursued both by theoretical and experimental approaches. The investigations soon concentrated on layered inorganic materials, which may be exfoliated and rolled up to tubular and scroll-type forms. The present chapter reviews the basic design principles, which govern the search for novel inorganic nanostructures on the basis of energy- and strain-related stability criteria. These principles are then applied to the prediction and characterisation of the properties of non-carbon, elemental and binary nanotubes derived from layered boride, nitride, and sulfide bulk phases. Finally, the present chapter introduces examples, where one-dimensional nanostructures such as tubes and scrolls have successfully been constructed from non-layered materials, especially from oxides. Examples for the experimental verification of the predicted structures are given throughout the discussion and impressively underline the predictive power of today’s materials modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima: Nature (London) 354, 56 (1991)

    Article  CAS  Google Scholar 

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  3. P.J.F. Harris: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge 1999)

    Google Scholar 

  4. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications and Electronics. In: Topics in Applied Physics, vol 80, ed by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer, Berlin Heidelberg New York 2001)

    Google Scholar 

  5. Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Chem. Phys. Lett. 387, 198 (2004).

    Article  CAS  Google Scholar 

  6. Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, Z.F. Ren: Appl. Phys. Lett. 85, 2607 (2004).

    Article  CAS  Google Scholar 

  7. E. Yenilmez, Q. Wang, R.J. Chen, D. Yang, H. Dai: Appl. Phys. Lett. 80, 2225 (2002)

    Article  CAS  Google Scholar 

  8. R.V. Seidel, A.P. Graham, J. Kretz, B. Rajasekharan, G.S. Duesberg, M. Liebau, E. Unger, F. Kreupl, W. Hoehnlein: Nano Lett. ASAP article, DOI:. 10.1021/nl048312d.

    Google Scholar 

  9. M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton: Nanotubes: A Revolution in Materials Science and Electronics. In: Topics in Current Chemistry, vol 199, ed by A. Hirsch (Springer, Berlin Heidelberg New York 1999) pp 189–234

    Google Scholar 

  10. A.L. Ivanovskii: Quantum Chemistry in Materials Science: Nanotubular Forms of Matter (Urals Branch of Russian Academy of Science, Ekaterinburg 1999)

    Google Scholar 

  11. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath: Chem. Phys. Chem. 2, 78 (2001)

    CAS  Google Scholar 

  12. A.L. Ivanovskii: Russian Chem. Rev. 68, 103 (1999)

    Article  CAS  Google Scholar 

  13. R. Tenne, L. Margulis, M. Genut et al.: Nature (London) 360, 444 (1992)

    Article  CAS  Google Scholar 

  14. S. Amelinckx, B. Devouard, A. Baronnet: Aca Cryst. A 52, 850 (1996)

    Article  Google Scholar 

  15. T.J. Zega, L.A.J. Garvie, I. Dódony et al.: Serpentine Nanotubes in CM Chondrites. In: Lunar and Planetary Science Conference, vol XXXV (League City, Texas) pp 1805

    Google Scholar 

  16. R. Tenne: Endeavour 20, 97 (1996)

    Article  CAS  Google Scholar 

  17. R. Tenne, A.K. Zettl: Nanotubes from Inorganic Materials. In: Topics in Applied Physics, vol 80, ed by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer, Berlin Heidelberg New York 2001) pp 81–112

    Google Scholar 

  18. V.V. Pokropivny: Powder Metallurgy and Metal Ceramics 41, 123 (2002)

    Article  Google Scholar 

  19. A.L. Ivanovskii: Russian Chem. Rev. 71, 175 (2002)

    Article  CAS  Google Scholar 

  20. G.R. Patzke, F. Krumeich, R. Nesper: Angew. Chem. Int. Ed. 41, 2446 (2002)

    Article  CAS  Google Scholar 

  21. R. Tenne: Chem. Eur. J. 8, 5297 (2002)

    Article  Google Scholar 

  22. R. Tenne: Angew. Chem. Int. Ed. 42, 5124 (2003)

    Article  CAS  Google Scholar 

  23. C.N.R. Rao, M. Nath: Dalton Trans. 1 (2003)

    Google Scholar 

  24. M. Remškar: Adv. Mater. 16, 1497 (2004)

    Article  CAS  Google Scholar 

  25. I. Milosević, T. Vuković, M. Damnjanović: Eur. Phys. J. B 17, 707 (2000)

    Article  Google Scholar 

  26. M. Damnjanović, T. Vuković, I. Milosević et al.: Acta Cryst. A 57, 304 (2001)

    Article  Google Scholar 

  27. Y. Saito, M. Maida: J. Phys. Chem. A 103, 1291 (1999)

    Article  CAS  Google Scholar 

  28. G. Seifert, H. Terrones, M. Terrones et al.: Phys. Rev. Lett. 85, 146 (2000)

    Article  CAS  Google Scholar 

  29. V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva et al.: Internet Electr. J. Mol. Des. 2, 499 (2003)

    CAS  Google Scholar 

  30. G. Seifert, T. Frauenheim: J. Korean Chem. Soc. 37, 89 (2000)

    CAS  Google Scholar 

  31. M.I. Mendelev, D.J. Srolovitz, S.A. Safran et al.: Phys. Rev. B 65, 075402 (2002)

    Article  CAS  Google Scholar 

  32. V.V. Ivanovskaya, G. Seifert: Solid State Comm. 130, 175 (2004)

    Article  CAS  Google Scholar 

  33. Th. Köhler, Th. Frauenheim, Z. Hajnal et al.: Phys. Rev. B 69, 193403 (2004)

    Article  CAS  Google Scholar 

  34. G. Seifert, T. Köhler, R. Tenne: J. Phys. Chem. B 106, 2497 (2002)

    Article  CAS  Google Scholar 

  35. A.N. Enyashin, Yu.N. Makurin, A.L. Ivanovskii: Doklady Phys. Chem. 399, 293 (2004)

    CAS  Google Scholar 

  36. S.F. Fagan, R.J. Baierle, R. Mota et al.: Phys. Rev. B 61, 9994 (2000)

    Article  CAS  Google Scholar 

  37. S.F. Fagan, R. Mota, R.J. Baierle et al.: J. Mol. Struct. 539, 101 (2001)

    CAS  Google Scholar 

  38. R.Q. Zhang, S.T. Lee, C.-K. Law et al.: Chem. Phys. Lett. 364, 251 (2002)

    Article  CAS  Google Scholar 

  39. M. Zhang, Y.H. Kan, Q.J. Zang et al.: Chem. Phys. Lett. 379, 81 (2003)

    Article  CAS  Google Scholar 

  40. K.R. Byun, J.W. Kang, H.J. Hwang: J. Korean Phys. Soc. 42, 635 (2003)

    CAS  Google Scholar 

  41. J.W. Kang, K.R. Byun, H.J. Hwang: Modelling Simul. Mater. Sci. Eng. 12, 1 (2004)

    Article  CAS  Google Scholar 

  42. Y. Li, J. Wang, Y. Wu, X. Jun, D. Yu, P. Yang: J. Am. Chem. Soc. 123, 9904 (2001)

    Article  CAS  Google Scholar 

  43. G. Seifert, Th. Köhler, H.M. Urbassek et al.: Phys. Rev. B 63, 193409 (2001)

    Article  CAS  Google Scholar 

  44. G. Seifert, Th. Köhler, Z. Hajnal et al.: Solid State Commun. 119, 653 (2001)

    Article  CAS  Google Scholar 

  45. G. Seifert, Th. Frauenheim, Th. Köhler et al.: Phys. Stat. Sol. (b) 225, 393 (2001)

    Article  CAS  Google Scholar 

  46. S. Gemming, G. Seifert: Phys. Rev. B 68, 075416 (2003)

    Article  CAS  Google Scholar 

  47. I.R. Shein, V.V. Ivanovskaya, N.I. Medvedeva et al.: JETP Letters 76, 189 (2002)

    Article  CAS  Google Scholar 

  48. G. Seifert, E. Hernández: Chem. Phys. Lett. 318, 355 (2000)

    Article  CAS  Google Scholar 

  49. I. Cabria, J.W. Mintmire: Europhys. Lett. 65, 82 (2004)

    Article  CAS  Google Scholar 

  50. C. Su, H.-T. Liu, J.-M. Li: Nanotechnology 13, 746 (2002)

    Article  CAS  Google Scholar 

  51. I. Boustani, A. Rubio, J.A. Alonso: Chem. Phys. Lett. 311, 21 (1999)

    Article  CAS  Google Scholar 

  52. S. Chacko, D.G. Kanhere, I. Boustani: Phys. Rev. B 68, 035414 (2003)

    Article  CAS  Google Scholar 

  53. I. Boustani, A. Quandt, E. Hernández et al.: J. Chem. Phys. 110, 3176 (1999)

    Article  CAS  Google Scholar 

  54. J. Kunstmann, A. Quandt: cond-mat 0410761 (2004)

    Google Scholar 

  55. L.A. Chernozatonskii: JETP Letters 74, 369 (2001)

    Google Scholar 

  56. A. Quandt, A.Y. Liu, I. Boustani: Phys. Rev. B 64, 125422 (2001)

    Article  CAS  Google Scholar 

  57. V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: J. Mol. Struct. (Theochem) 625, 9 (2003)

    Article  CAS  Google Scholar 

  58. V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: Theor. Exp. Chem. 39, 1 (2003)

    Article  CAS  Google Scholar 

  59. V.G. Bamburov, V.V. Ivanovskaya, A.N. Enyashin et al.: Doklady Phys. Chem. 388, 43 (2003)

    Article  CAS  Google Scholar 

  60. S. Guerini, P. Piquini: Microelectronics J. 34, 495 (2003)

    Article  CAS  Google Scholar 

  61. A. Rubio, J.L. Corkill, M.L. Cohen: Phys. Rev. B 49, 5081 (1994)

    Article  CAS  Google Scholar 

  62. A. Rubio, Y. Miyamoto, X. Blase et al.: Phys. Rev. B 53, 4023 (1996)

    Article  CAS  Google Scholar 

  63. A.N. Enyashin, G. Seifert, A.L. Ivanovskii: JETP Letters 80, 608 (2004)

    Article  CAS  Google Scholar 

  64. S. Guerini, T. Kar, P. Piquini: Eur. Phys. J. B 38, 515 (2004)

    Article  CAS  Google Scholar 

  65. E. Hernández, C. Goze, P. Bernier et al.: Phys. Rev. Lett. 80, 4502 (1998)

    Article  Google Scholar 

  66. W.H. Moon, H.J. Hwang: Nanotechnology 15, 431 (2004)

    Article  CAS  Google Scholar 

  67. T. Dumitrica, H.F. Bettinger, G.E. Scuseria et al.: Phys. Rev. B 68, 085412 (2003)

    Article  CAS  Google Scholar 

  68. N.G. Chopra, A. Zettl: Boron-nitride-containing Nanotubes. In: Fullerenes: Chemistry, Physics, and Technology, ed by K.M. Kadish, R.S. Ruoff (John Wiley & Sons 2000) pp 767–794

    Google Scholar 

  69. M. Zhao, Y. Xia, D. Zhang et al.: Phys. Rev. B 68, 235415 (2003)

    Article  CAS  Google Scholar 

  70. M. Zhao, Y. Xia, Z. Tan et al.: Chem. Phys. Lett. 389, 160 (2004)

    Article  CAS  Google Scholar 

  71. S.M. Lee, Y.H. Lee, Y.G. Hwang et al.: J. Korean Phys. Soc. 34, S253 (1999)

    CAS  Google Scholar 

  72. S.M. Lee, Y.H. Lee, Y.G. Hwang et al.: Phys. Rev. B 60, 7788 (1999)

    Article  CAS  Google Scholar 

  73. S. Hao, G. Zhou, J. Wu et al.: Phys. Rev. B 69, 113403 (2004)

    Article  CAS  Google Scholar 

  74. J.W. Kang, H.J. Hwang, K.O. Song et al.: J. Korean Phys. Soc. 43, 372 (2003)

    CAS  Google Scholar 

  75. Y.-R. Jeng, P.-C. Tsai, T.H. Fang: Nanotechnology 15, 1737 (2004)

    Article  CAS  Google Scholar 

  76. G. Seifert, H. Terrones, M. Terrones et al.: Solid State Comm. 114, 245 (2000)

    Article  CAS  Google Scholar 

  77. G. Seifert, H. Terrones, M. Terrones et al.: Solid State Comm. 115, 635 (2000)

    Article  CAS  Google Scholar 

  78. V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva et al.: Phys. Stat. Sol. (b) 238, R1 (2003)

    CAS  Google Scholar 

  79. A.N. Enyashin, V.V. Ivanovskaya, I.R. Shein et al.: Russian J. Struct. Chem. 45, 579 (2004)

    Article  CAS  Google Scholar 

  80. V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii: Russian J. Inorg. Chem. 49, 244 (2004)

    Google Scholar 

  81. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman et al.: J. Mater. Res. 19, 454 (2004)

    Article  CAS  Google Scholar 

  82. M. Côté, M.L. Cohen, D.J. Chadi: Phys. Rev. B 58, R4277 (1998)

    Article  Google Scholar 

  83. V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii: Mendeleev Commun. 13, 5 (2003)

    Article  CAS  Google Scholar 

  84. A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Doklady Phys. Chem. 391, 187 (2003)

    Article  CAS  Google Scholar 

  85. A.N. Enyashin, G. Seifert: Phys. Stat. Sol. (b) 242, 1361 (2005)

    Article  CAS  Google Scholar 

  86. A.N. Enyashin, V.V. Ivanovskaya, A.L. Ivanovskii: Mendeleev Commun. 14, 94 (2004)

    Article  CAS  Google Scholar 

  87. V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: Solid State Comm. 126, 489 (2003)

    Article  CAS  Google Scholar 

  88. A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Phys. Lett. A. 326, 152 (2004)

    Article  CAS  Google Scholar 

  89. A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Chem. Phys. Lett. 392, 555 (2004)

    Article  CAS  Google Scholar 

  90. N. Grobert, T. Seeger, G. Seifert et al.: J. Ceramic Proc. Res. 4, 1 (2003)

    Google Scholar 

  91. T. Seeger, Th. Köhler, Th. Frauenheim et al.: Chem. Commun. 34 (2002)

    Google Scholar 

  92. G. Bilalbegović: Phys. Rev. B 70, 045407 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Enyashin, A.N., Gemming, S., Seifert, G. (2007). Simulation of Inorganic Nanotubes. In: Gemming, S., Schreiber, M., Suck, JB. (eds) Materials for Tomorrow. Springer Series in Materials Science, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47971-0_2

Download citation

Publish with us

Policies and ethics