Advertisement

Simulation of Inorganic Nanotubes

  • Andrey N. Enyashin
  • Sibylle Gemming
  • Gotthard Seifert
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 93)

Summary

Motivated by the high application potential of carbon nanotubes, the search for other quasi one-dimensional nanostructures has been pursued both by theoretical and experimental approaches. The investigations soon concentrated on layered inorganic materials, which may be exfoliated and rolled up to tubular and scroll-type forms. The present chapter reviews the basic design principles, which govern the search for novel inorganic nanostructures on the basis of energy- and strain-related stability criteria. These principles are then applied to the prediction and characterisation of the properties of non-carbon, elemental and binary nanotubes derived from layered boride, nitride, and sulfide bulk phases. Finally, the present chapter introduces examples, where one-dimensional nanostructures such as tubes and scrolls have successfully been constructed from non-layered materials, especially from oxides. Examples for the experimental verification of the predicted structures are given throughout the discussion and impressively underline the predictive power of today’s materials modelling.

Keywords

Carbon Nanotubes Boron Nitride Layered Boride Carbon Tube Oxide Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima: Nature (London) 354, 56 (1991)CrossRefGoogle Scholar
  2. 2.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)Google Scholar
  3. 3.
    P.J.F. Harris: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge 1999)Google Scholar
  4. 4.
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications and Electronics. In: Topics in Applied Physics, vol 80, ed by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer, Berlin Heidelberg New York 2001)Google Scholar
  5. 5.
    Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Chem. Phys. Lett. 387, 198 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, Z.F. Ren: Appl. Phys. Lett. 85, 2607 (2004).CrossRefGoogle Scholar
  7. 7.
    E. Yenilmez, Q. Wang, R.J. Chen, D. Yang, H. Dai: Appl. Phys. Lett. 80, 2225 (2002)CrossRefGoogle Scholar
  8. 8.
    R.V. Seidel, A.P. Graham, J. Kretz, B. Rajasekharan, G.S. Duesberg, M. Liebau, E. Unger, F. Kreupl, W. Hoehnlein: Nano Lett. ASAP article, DOI:. 10.1021/nl048312d.Google Scholar
  9. 9.
    M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton: Nanotubes: A Revolution in Materials Science and Electronics. In: Topics in Current Chemistry, vol 199, ed by A. Hirsch (Springer, Berlin Heidelberg New York 1999) pp 189–234Google Scholar
  10. 10.
    A.L. Ivanovskii: Quantum Chemistry in Materials Science: Nanotubular Forms of Matter (Urals Branch of Russian Academy of Science, Ekaterinburg 1999)Google Scholar
  11. 11.
    C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath: Chem. Phys. Chem. 2, 78 (2001)Google Scholar
  12. 12.
    A.L. Ivanovskii: Russian Chem. Rev. 68, 103 (1999)CrossRefGoogle Scholar
  13. 13.
    R. Tenne, L. Margulis, M. Genut et al.: Nature (London) 360, 444 (1992)CrossRefGoogle Scholar
  14. 14.
    S. Amelinckx, B. Devouard, A. Baronnet: Aca Cryst. A 52, 850 (1996)CrossRefGoogle Scholar
  15. 15.
    T.J. Zega, L.A.J. Garvie, I. Dódony et al.: Serpentine Nanotubes in CM Chondrites. In: Lunar and Planetary Science Conference, vol XXXV (League City, Texas) pp 1805Google Scholar
  16. 16.
    R. Tenne: Endeavour 20, 97 (1996)CrossRefGoogle Scholar
  17. 17.
    R. Tenne, A.K. Zettl: Nanotubes from Inorganic Materials. In: Topics in Applied Physics, vol 80, ed by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer, Berlin Heidelberg New York 2001) pp 81–112Google Scholar
  18. 18.
    V.V. Pokropivny: Powder Metallurgy and Metal Ceramics 41, 123 (2002)CrossRefGoogle Scholar
  19. 19.
    A.L. Ivanovskii: Russian Chem. Rev. 71, 175 (2002)CrossRefGoogle Scholar
  20. 20.
    G.R. Patzke, F. Krumeich, R. Nesper: Angew. Chem. Int. Ed. 41, 2446 (2002)CrossRefGoogle Scholar
  21. 21.
    R. Tenne: Chem. Eur. J. 8, 5297 (2002)CrossRefGoogle Scholar
  22. 22.
    R. Tenne: Angew. Chem. Int. Ed. 42, 5124 (2003)CrossRefGoogle Scholar
  23. 23.
    C.N.R. Rao, M. Nath: Dalton Trans. 1 (2003)Google Scholar
  24. 24.
    M. Remškar: Adv. Mater. 16, 1497 (2004)CrossRefGoogle Scholar
  25. 25.
    I. Milosević, T. Vuković, M. Damnjanović: Eur. Phys. J. B 17, 707 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Damnjanović, T. Vuković, I. Milosević et al.: Acta Cryst. A 57, 304 (2001)CrossRefGoogle Scholar
  27. 27.
    Y. Saito, M. Maida: J. Phys. Chem. A 103, 1291 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Seifert, H. Terrones, M. Terrones et al.: Phys. Rev. Lett. 85, 146 (2000)CrossRefGoogle Scholar
  29. 29.
    V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva et al.: Internet Electr. J. Mol. Des. 2, 499 (2003)Google Scholar
  30. 30.
    G. Seifert, T. Frauenheim: J. Korean Chem. Soc. 37, 89 (2000)Google Scholar
  31. 31.
    M.I. Mendelev, D.J. Srolovitz, S.A. Safran et al.: Phys. Rev. B 65, 075402 (2002)CrossRefGoogle Scholar
  32. 32.
    V.V. Ivanovskaya, G. Seifert: Solid State Comm. 130, 175 (2004)CrossRefGoogle Scholar
  33. 33.
    Th. Köhler, Th. Frauenheim, Z. Hajnal et al.: Phys. Rev. B 69, 193403 (2004)CrossRefGoogle Scholar
  34. 34.
    G. Seifert, T. Köhler, R. Tenne: J. Phys. Chem. B 106, 2497 (2002)CrossRefGoogle Scholar
  35. 35.
    A.N. Enyashin, Yu.N. Makurin, A.L. Ivanovskii: Doklady Phys. Chem. 399, 293 (2004)Google Scholar
  36. 36.
    S.F. Fagan, R.J. Baierle, R. Mota et al.: Phys. Rev. B 61, 9994 (2000)CrossRefGoogle Scholar
  37. 37.
    S.F. Fagan, R. Mota, R.J. Baierle et al.: J. Mol. Struct. 539, 101 (2001)Google Scholar
  38. 38.
    R.Q. Zhang, S.T. Lee, C.-K. Law et al.: Chem. Phys. Lett. 364, 251 (2002)CrossRefGoogle Scholar
  39. 39.
    M. Zhang, Y.H. Kan, Q.J. Zang et al.: Chem. Phys. Lett. 379, 81 (2003)CrossRefGoogle Scholar
  40. 40.
    K.R. Byun, J.W. Kang, H.J. Hwang: J. Korean Phys. Soc. 42, 635 (2003)Google Scholar
  41. 41.
    J.W. Kang, K.R. Byun, H.J. Hwang: Modelling Simul. Mater. Sci. Eng. 12, 1 (2004)CrossRefGoogle Scholar
  42. 42.
    Y. Li, J. Wang, Y. Wu, X. Jun, D. Yu, P. Yang: J. Am. Chem. Soc. 123, 9904 (2001)CrossRefGoogle Scholar
  43. 43.
    G. Seifert, Th. Köhler, H.M. Urbassek et al.: Phys. Rev. B 63, 193409 (2001)CrossRefGoogle Scholar
  44. 44.
    G. Seifert, Th. Köhler, Z. Hajnal et al.: Solid State Commun. 119, 653 (2001)CrossRefGoogle Scholar
  45. 45.
    G. Seifert, Th. Frauenheim, Th. Köhler et al.: Phys. Stat. Sol. (b) 225, 393 (2001)CrossRefGoogle Scholar
  46. 46.
    S. Gemming, G. Seifert: Phys. Rev. B 68, 075416 (2003)CrossRefGoogle Scholar
  47. 47.
    I.R. Shein, V.V. Ivanovskaya, N.I. Medvedeva et al.: JETP Letters 76, 189 (2002)CrossRefGoogle Scholar
  48. 48.
    G. Seifert, E. Hernández: Chem. Phys. Lett. 318, 355 (2000)CrossRefGoogle Scholar
  49. 49.
    I. Cabria, J.W. Mintmire: Europhys. Lett. 65, 82 (2004)CrossRefGoogle Scholar
  50. 50.
    C. Su, H.-T. Liu, J.-M. Li: Nanotechnology 13, 746 (2002)CrossRefGoogle Scholar
  51. 51.
    I. Boustani, A. Rubio, J.A. Alonso: Chem. Phys. Lett. 311, 21 (1999)CrossRefGoogle Scholar
  52. 52.
    S. Chacko, D.G. Kanhere, I. Boustani: Phys. Rev. B 68, 035414 (2003)CrossRefGoogle Scholar
  53. 53.
    I. Boustani, A. Quandt, E. Hernández et al.: J. Chem. Phys. 110, 3176 (1999)CrossRefGoogle Scholar
  54. 54.
    J. Kunstmann, A. Quandt: cond-mat 0410761 (2004)Google Scholar
  55. 55.
    L.A. Chernozatonskii: JETP Letters 74, 369 (2001)Google Scholar
  56. 56.
    A. Quandt, A.Y. Liu, I. Boustani: Phys. Rev. B 64, 125422 (2001)CrossRefGoogle Scholar
  57. 57.
    V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: J. Mol. Struct. (Theochem) 625, 9 (2003)CrossRefGoogle Scholar
  58. 58.
    V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: Theor. Exp. Chem. 39, 1 (2003)CrossRefGoogle Scholar
  59. 59.
    V.G. Bamburov, V.V. Ivanovskaya, A.N. Enyashin et al.: Doklady Phys. Chem. 388, 43 (2003)CrossRefGoogle Scholar
  60. 60.
    S. Guerini, P. Piquini: Microelectronics J. 34, 495 (2003)CrossRefGoogle Scholar
  61. 61.
    A. Rubio, J.L. Corkill, M.L. Cohen: Phys. Rev. B 49, 5081 (1994)CrossRefGoogle Scholar
  62. 62.
    A. Rubio, Y. Miyamoto, X. Blase et al.: Phys. Rev. B 53, 4023 (1996)CrossRefGoogle Scholar
  63. 63.
    A.N. Enyashin, G. Seifert, A.L. Ivanovskii: JETP Letters 80, 608 (2004)CrossRefGoogle Scholar
  64. 64.
    S. Guerini, T. Kar, P. Piquini: Eur. Phys. J. B 38, 515 (2004)CrossRefGoogle Scholar
  65. 65.
    E. Hernández, C. Goze, P. Bernier et al.: Phys. Rev. Lett. 80, 4502 (1998)CrossRefGoogle Scholar
  66. 66.
    W.H. Moon, H.J. Hwang: Nanotechnology 15, 431 (2004)CrossRefGoogle Scholar
  67. 67.
    T. Dumitrica, H.F. Bettinger, G.E. Scuseria et al.: Phys. Rev. B 68, 085412 (2003)CrossRefGoogle Scholar
  68. 68.
    N.G. Chopra, A. Zettl: Boron-nitride-containing Nanotubes. In: Fullerenes: Chemistry, Physics, and Technology, ed by K.M. Kadish, R.S. Ruoff (John Wiley & Sons 2000) pp 767–794Google Scholar
  69. 69.
    M. Zhao, Y. Xia, D. Zhang et al.: Phys. Rev. B 68, 235415 (2003)CrossRefGoogle Scholar
  70. 70.
    M. Zhao, Y. Xia, Z. Tan et al.: Chem. Phys. Lett. 389, 160 (2004)CrossRefGoogle Scholar
  71. 71.
    S.M. Lee, Y.H. Lee, Y.G. Hwang et al.: J. Korean Phys. Soc. 34, S253 (1999)Google Scholar
  72. 72.
    S.M. Lee, Y.H. Lee, Y.G. Hwang et al.: Phys. Rev. B 60, 7788 (1999)CrossRefGoogle Scholar
  73. 73.
    S. Hao, G. Zhou, J. Wu et al.: Phys. Rev. B 69, 113403 (2004)CrossRefGoogle Scholar
  74. 74.
    J.W. Kang, H.J. Hwang, K.O. Song et al.: J. Korean Phys. Soc. 43, 372 (2003)Google Scholar
  75. 75.
    Y.-R. Jeng, P.-C. Tsai, T.H. Fang: Nanotechnology 15, 1737 (2004)CrossRefGoogle Scholar
  76. 76.
    G. Seifert, H. Terrones, M. Terrones et al.: Solid State Comm. 114, 245 (2000)CrossRefGoogle Scholar
  77. 77.
    G. Seifert, H. Terrones, M. Terrones et al.: Solid State Comm. 115, 635 (2000)CrossRefGoogle Scholar
  78. 78.
    V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva et al.: Phys. Stat. Sol. (b) 238, R1 (2003)Google Scholar
  79. 79.
    A.N. Enyashin, V.V. Ivanovskaya, I.R. Shein et al.: Russian J. Struct. Chem. 45, 579 (2004)CrossRefGoogle Scholar
  80. 80.
    V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii: Russian J. Inorg. Chem. 49, 244 (2004)Google Scholar
  81. 81.
    I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman et al.: J. Mater. Res. 19, 454 (2004)CrossRefGoogle Scholar
  82. 82.
    M. Côté, M.L. Cohen, D.J. Chadi: Phys. Rev. B 58, R4277 (1998)CrossRefGoogle Scholar
  83. 83.
    V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii: Mendeleev Commun. 13, 5 (2003)CrossRefGoogle Scholar
  84. 84.
    A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Doklady Phys. Chem. 391, 187 (2003)CrossRefGoogle Scholar
  85. 85.
    A.N. Enyashin, G. Seifert: Phys. Stat. Sol. (b) 242, 1361 (2005)CrossRefGoogle Scholar
  86. 86.
    A.N. Enyashin, V.V. Ivanovskaya, A.L. Ivanovskii: Mendeleev Commun. 14, 94 (2004)CrossRefGoogle Scholar
  87. 87.
    V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov et al.: Solid State Comm. 126, 489 (2003)CrossRefGoogle Scholar
  88. 88.
    A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Phys. Lett. A. 326, 152 (2004)CrossRefGoogle Scholar
  89. 89.
    A.N. Enyashin, V.V. Ivanovskaya, Yu.N. Makurin et al.: Chem. Phys. Lett. 392, 555 (2004)CrossRefGoogle Scholar
  90. 90.
    N. Grobert, T. Seeger, G. Seifert et al.: J. Ceramic Proc. Res. 4, 1 (2003)Google Scholar
  91. 91.
    T. Seeger, Th. Köhler, Th. Frauenheim et al.: Chem. Commun. 34 (2002)Google Scholar
  92. 92.
    G. Bilalbegović: Phys. Rev. B 70, 045407 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrey N. Enyashin
    • 1
    • 2
  • Sibylle Gemming
    • 2
    • 3
  • Gotthard Seifert
    • 2
  1. 1.Institute of Solid State ChemistryEkaterinburgRussia
  2. 2.Institute of Physical Chemistry and ElectrochemistryDresdenGermany
  3. 3.Institute of Ion Beam Physics and Materials ResearchFZ RossendorfDresdenGermany

Personalised recommendations