Computer Simulations of Undercooled Fluids and Glasses

  • Kurt Binder
  • Daniel Herzbach
  • Jürgen Horbach
  • Martin H. Müser
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 93)


An introduction to the Molecular Dynamics (MD) simulation of chemically realistic models for undercooled fluids and glasses is given, emphasizing silicatic materials such as molten silicon dioxide and its mixtures with sodium oxide and aluminium oxide, and comparing the simulation results to experimental data whenever possible.

A key ingredient to the computer simulation of materials is a sufficiently accurate description of the force fields with which the atoms interact. The need to simulate large systems for sufficiently long times makes the use of effective potentials for classical MD methods desirable. The validation of such effective potentials is best done studying the corresponding crystalline states of the material. As an example, the use of the so-called BKS-potential studying the structural and thermal properties of quartz crystals is described, and a comparison to other potentials is discussed.

When one studies undercooled fluids and glasses, a second problem enters, the disparity between experimental cooling rates and the much larger rates of the simulation. The extent to which a meaningful comparison to experiments is nevertheless possible is discussed. It is shown that the simulations can reproduce the structural and dynamic properties of molten silica (including self diffusion coefficients, viscosity, sound velocity, etc.) and its mixtures with other oxides. Evidence for the formation of sodium-rich channels responsible for anomalously large diffusion constants of sodium in mixtures containing sodium oxide will be discussed. No enhanced diffusion of aluminium occurs, however, due to “tricluster” formation in such mixtures.


Monte Carlo Classical Molecular Dynamics Sodium Oxide Molecular Dynamics Result Verlet Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)Google Scholar
  2. 2.
    K. Binder, G. Ciccotti (Eds.): Monte Carlo and Molecular Dynamics of Condensed Matter Systems (Societá) Italiana di Fisica, Bologna, 1996)Google Scholar
  3. 3.
    D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 1996)Google Scholar
  4. 4.
    D.P. Landau, K. Binder: A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000)Google Scholar
  5. 5.
    J. Grotendorst, D. Marx, M. Muramatsu (Eds.): Quantum Theory of Complex Many-Body Systems: From Theory to Algorithms — Lecture Notes (NIC, Jülich, 2002)Google Scholar
  6. 6.
    N. Attig, K. Binder, H. Grubmüller, K. Kremer (Eds.): Computational Soft Matter: From Synthetic Polymers to Proteins — Lecture Notes (NIC, Jülich, 2004)Google Scholar
  7. 7.
    M. Karttunen, I. Vattulainen, A. Lukkarinen (Eds.) Novel Methods of Soft Matter Simulations. Lecture Notes in Physics, Vol 640 (Springer, Berlin, 2004)Google Scholar
  8. 8.
    K. Kremer, G.S. Grest: J. Chem. Phys. 92, 5057 (1990)CrossRefGoogle Scholar
  9. 9.
    K. Binder (ed.): Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995)Google Scholar
  10. 10.
    K. Binder, D.W. Heermann: Monte Carlo Simulations in Statistical Physics. An Introduction (4th Ed.) (Springer, Berlin, 2002)Google Scholar
  11. 11.
    A. Sariban, K. Binder: J. Chem. Phys. 86, 5859 (1987)CrossRefGoogle Scholar
  12. 12.
    S.K. Das, J. Horbach, K. Binder: J. Chem. Phys. 119, 1547 (2003)CrossRefGoogle Scholar
  13. 13.
    K. Binder, J.L. Lebowitz, M.K. Phani, M.H. Kalos: Acta Metall. 29, 1655 (1981)CrossRefGoogle Scholar
  14. 14.
    R. Car, M. Parrinello: Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  15. 15.
    W. Kohn: In: Monte Carlo and Molecular Dynamics of Condensed Matter Systems ed. by K. Binder, G. Cicotti (Societá Italiana di Fisica, Bologna, 996) p. 561; R. Car: ibid. p. 601Google Scholar
  16. 16.
    B.J. Berne, D. Thirumalai: Annu. Rev. Phys. Chem. 37, 401 (1986)CrossRefGoogle Scholar
  17. 17.
    D.M. Ceperley: Rev. Mod. Phys. 67, 279 (1995)CrossRefGoogle Scholar
  18. 18.
    D.M. Ceperley: In: Monte Carlo and Molecular Dynamics of Condensed Matter Systems ed. by K. Binder, G. Ciccotti (Societa Italiana di Fisica, Bologna, 1996) p. 443Google Scholar
  19. 19.
    P. Nielaba: In: Annual Reviews of Computational Science, Vol. 5 ed. by D. Stauffer (World Scientific, Singapore, 1997) p. 137Google Scholar
  20. 20.
    D. Marx, M.H. Müser: J. Phys.: Condens. Matter 11, R117 (1999)CrossRefGoogle Scholar
  21. 21.
    M.E. Tuckerman, B.J. Berne, G.J. Martyna, M.L. Klein: J. Chem. Phys. 99, 2796 (1993)CrossRefGoogle Scholar
  22. 22.
    M.E. Tuckerman, A. Hughes: Classical and Quantum Dynamics in Condensed Phase Simulation (World Scientific, Singapore, 1998)Google Scholar
  23. 23.
    M.H. Müser: J. Chem. Phys. 114, 6364 (2001)CrossRefGoogle Scholar
  24. 24.
    P. Schöffel, M. H. Müser: Phys. Rev. B 63, 224180 (2001)CrossRefGoogle Scholar
  25. 25.
    D. Marx: Science 303, 634 (2004); D. Marx, M.E. Tuckerman, G.J. Martyna: Comput. Phys. Commun. 118, 166 (1999); D. Marx, M. Parrinello: Z. Phys. B 95, 143 (1994)CrossRefGoogle Scholar
  26. 26.
    L. Verlet: Phys. Rev. 159, 98 (1967)CrossRefGoogle Scholar
  27. 27.
    H.C. Andersen: J. Comput. Phys. 52, 24 (1983)CrossRefGoogle Scholar
  28. 28.
    M. Tuckerman, G.J. Martyna, B.J. Berne: J. Chem. Phys. 97, 1990 (1992)CrossRefGoogle Scholar
  29. 29.
    J.L. Lebowitz, J.K. Percus, L. Verlet: Phys. Rev. 153, 250 (1967)CrossRefGoogle Scholar
  30. 30.
    S. Nose: J. Chem. Phys. 81, 511 (1984)CrossRefGoogle Scholar
  31. 31.
    W.G. Hoover: Phys. Rev. A 31, 1695 (1985)CrossRefGoogle Scholar
  32. 32.
    C. Bennemann, W. Paul, K. Binder, B. Dünweg: Phys. Rev. 57, 843 (1998)Google Scholar
  33. 33.
    H.C. Andersen: J. Chem. Phys. 72, 2384 (1980)CrossRefGoogle Scholar
  34. 34.
    L.P. Kadanoff, P.C. Martin: Ann. Phys. (N.Y.) 24, 419 (1963)CrossRefGoogle Scholar
  35. 35.
    J.-P. Hansen, I.R. McDonald: Theory of Simple Liquids (Academic, San Diego, 1986)Google Scholar
  36. 36.
    J.P. Boon, S. Yip: Molecular Hydrodynamics (McGraw Hill, New York, 1980)Google Scholar
  37. 37.
    B. van Beest, G. Kramer, R. van Santen: Phys. Rev. Lett. 64, 1955 (1990)CrossRefGoogle Scholar
  38. 38.
    S. Tsuneyuki, M. Tsukada, H. Aoki, F. Matsui: Phys. Rev. Lett. 61, 869 (1988)CrossRefGoogle Scholar
  39. 39.
    K. Vollmayr, W. Kob, K. Binder: Phys. Rev. B54, 15808 (1996)CrossRefGoogle Scholar
  40. 40.
    C.A. Angell, J.H.R. Clark, L.V. Woodcock: Adv. Chem. Phys. 48, 397 (1981)Google Scholar
  41. 41.
    J. Horbach, W. Kob, K. Binder: Phil. Mag. B 77, 297 (1998)CrossRefGoogle Scholar
  42. 42.
    J. Horbach, W. Kob, K. Binder: J. Non-Cryst. Solids 235–237, 320 (1998)CrossRefGoogle Scholar
  43. 43.
    J. Horbach, W. Kob: Phys. Rev. B 60, 3169 (1999)CrossRefGoogle Scholar
  44. 44.
    J. Horbach, W. Kob, K. Binder: J. Phys. Chem. B 103, 4104 (1999)CrossRefGoogle Scholar
  45. 45.
    J. Horbach, W. Kob, K. Binder, A.C. Angell: Phys. Rev. E 54, R5897 (1996)CrossRefGoogle Scholar
  46. 46.
    D.L. Price, S.M. Carpenter: J. Non-Cryst. Solids 92, 153 (1987)CrossRefGoogle Scholar
  47. 47.
    P.J. Heaney, C.T. Prewitt, G.V. Gibbs (eds.): Silica — Physical Behavior, Geochemistry and Materials Applications (Mineral Soc. Am., Washington D.C., 1994)Google Scholar
  48. 48.
    M.H. Müser, K. Binder: Phys. Chem. Minerals 28, 746 (2001)CrossRefGoogle Scholar
  49. 49.
    D. Herzbach, K. Binder, M.H. Müser: J. Chem. Phys. 123, 124711 (2005)CrossRefGoogle Scholar
  50. 50.
    M. Parrinello, A. Rahman: Phys. Rev. Lett. 45, 1196 (1980)CrossRefGoogle Scholar
  51. 51.
    K. Binder: In: Phase Transformations in Materials ed. by G. Kostorz. Wiley-VCH, Weinheim (2001), p. 239CrossRefGoogle Scholar
  52. 52.
    P.C. Hohenberg, B.I. Halperin: Rev. Mod. Phys. 49, 435 (1977)CrossRefGoogle Scholar
  53. 53.
    K. Binder: In: Computational Methods in Field Theory ed. by H. Gausterer and C.B. Lang (Springer, Berlin, 1992), p. 59Google Scholar
  54. 54.
    K. Binder: Rep. Progr. Phys. 60, 487 (1997)CrossRefGoogle Scholar
  55. 55.
    M.A. Carpenter, E.K.H. Salje, A. Graeme-Barber, B. Wruck, M.T. Dove, K.S. Knight: Am. Mineral 83, 2 (1998)Google Scholar
  56. 56.
    K. Binder: Z. Phys. B 43, 119 (1981)CrossRefGoogle Scholar
  57. 57.
    M.E. Fisher: Rev. Mod. Phys. 46, 587 (1974)CrossRefGoogle Scholar
  58. 58.
    H. Grimm, B. Dorner: J. Phys. Chem. Solids 36, 407 (1975)CrossRefGoogle Scholar
  59. 59.
    J.S. Tse, D.D. Klug: J. Chem. Phys. 95, 9176 (1991)CrossRefGoogle Scholar
  60. 60.
    S. Tsuneyuki, H. Aoki, M. Tsukuda: Phys. Rev. Lett. 64, 776 (1990)CrossRefGoogle Scholar
  61. 61.
    E. Demiralp, T. Cagin, W.A. Goddard III: Phys. Rev. Lett. 82, 1708 (1999)CrossRefGoogle Scholar
  62. 62.
    P. Tangney, S. Scandolo: J. Chem. Phys. 117, 8898 (2002)CrossRefGoogle Scholar
  63. 63.
    D. Herzbach: Dissertation (Johannes Gutenberg Universität Mainz, 2004)Google Scholar
  64. 64.
    R.B. Sosman: The Properties of Silica, (Chemical Catalog Co., New York, 1927)Google Scholar
  65. 65.
    R.C. Zeller, R.O. Pohl: Phys. Rev. B4, 2029 (1971)CrossRefGoogle Scholar
  66. 66.
    P. Richet, Y. Bottinga, D. Denielou, J.P. Petitet, C. Tegui: Geochem. Cosmochim. Acta 46, 2639 (1982)CrossRefGoogle Scholar
  67. 67.
    J. Horbach, W. Kob, K. Binder: Eur. Phys. J. B 19, 539 (2001)CrossRefGoogle Scholar
  68. 68.
    A. Polian, D. Vo-Tanh, P. Richter: Europhys. Lett. 57, 375 (2002)CrossRefGoogle Scholar
  69. 69.
    J.C. Mikkelsen: Appl Phys. Lett. 45, 1187 (1984)CrossRefGoogle Scholar
  70. 70.
    G. Brébec, P. Seguin, C. Sella, J. Bevenot, J.C. Martin: Acta Metall. 28, 327 (1970)Google Scholar
  71. 71.
    W. Götze, J. Sjögren: Rep. Prog. Phys. 55, 214 (1992)CrossRefGoogle Scholar
  72. 72.
    W. Kob: J. Phys.: Cond. Matter 11, R85 (1999)CrossRefGoogle Scholar
  73. 73.
    K. Binder, W. Kob: Statistical mechanics of disordered materials (World Scientific, Singapore, 2005)Google Scholar
  74. 74.
    G. Urbain: Geochim. Cosmochim. Acta 46, 1061 (1982)CrossRefGoogle Scholar
  75. 75.
    J. Horbach, W. Kob, K. Binder: Chem. Geol. 174, 87 (2001)CrossRefGoogle Scholar
  76. 76.
    J. Horbach, W. Kob, K. Binder: Phys. Rev. Lett. 88, 125502 (2002)CrossRefGoogle Scholar
  77. 77.
    A. Winkler, J. Horbach, W. Kob, K. Binder: J. Chem. Phys. 120, 384 (2003)CrossRefGoogle Scholar
  78. 78.
    K. Binder, J. Horbach, W. Kob, A. Winkler: In: Complex Inorganic Solids III ed. by P.E.A. Turchi et al., (Springer, Berlin, 2005), p. 35Google Scholar
  79. 79.
    G.J. Kramer, A.J.M. de Man, R.A. van Santen: J. Am. Chem. Soc. 64, 6435 (1991)CrossRefGoogle Scholar
  80. 80.
    M. Misawa, D.L. Price, K. Suzuki: J. Non-Cryst. Solids 37, 85 (1980)CrossRefGoogle Scholar
  81. 81.
    A. Meyer, H. Schober, D.B. Dingwell: Europhys. Lett. 59, 708 (2002)CrossRefGoogle Scholar
  82. 82.
    A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober: Phys. Rev. Lett. 93, 027801 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kurt Binder
    • 1
  • Daniel Herzbach
    • 1
  • Jürgen Horbach
    • 1
  • Martin H. Müser
    • 2
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations