Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 359.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mourad LA (1998) Structure and function of the musculoskeletal system. In: McCane KL, Huether SE (eds) Pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1405–1434

    Google Scholar 

  2. Suzuki R, Domon T, Wakita M (2000) Some osteocytes released from their lacunae are embedded again in the bone and not regulated by osteoclasts during remodeling. Anat Embryol 202:119–128

    Article  PubMed  CAS  Google Scholar 

  3. Gillespy T III, Gillespy MP (1991) Osteoporosis. Radiol Clin North Am 29:77–84

    PubMed  Google Scholar 

  4. Boskey AL (1981) Current concepts of the physiology and biochemistry of calcification. Clin Orthop 157:225

    PubMed  CAS  Google Scholar 

  5. Tondevold E, Eliasen P (1982) Blood flow rates in canine cortical and cancellous bone measured with Tc99m labeled human albumin microspheres. Acta Orthop Scand 53:7–11

    PubMed  CAS  Google Scholar 

  6. McCarthy EF (1997) Histopathologic correlates of positive bone scan. Semin Nucl Med 27:309–320

    Article  PubMed  CAS  Google Scholar 

  7. Dalinka MK, Aronchick JM, Haddad JG (1983) Paget’s disease. Orthop Clin North Am 4:3–19

    Google Scholar 

  8. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  9. Francis MD, Horn PA, Tofe AJ (1981) Controversial mechanism of technetium-99m deposition on bone (abstract). J Nucl Med 22:72

    Google Scholar 

  10. Francis MD, Slough CL, Tofe AJ, Silberstein EB (1976) Factors affecting uptake and retention of technetium-99m-diphosphonate and technetium 99m pertechnetate in osseous, connective and soft tissues. Calcif Tissue Res 20:303–311

    Article  PubMed  CAS  Google Scholar 

  11. Haas DW, McAndrew M (1996) Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med 101:550–561

    Article  PubMed  CAS  Google Scholar 

  12. Cierny G, Mader JT, Pennick H (1985) A clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  13. Mandell GA (1996) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 26:218–237

    Article  PubMed  CAS  Google Scholar 

  14. Mader JT, Dhraminder M, Calhoun J (1997) A practical guide to the diagnosis and management of bone and joint infections. Drugs 54:253–264

    Article  PubMed  CAS  Google Scholar 

  15. Bonakdar-pour A, Gaines VD (1983) The radiology of osteomyelitis. Orthoped Clin North Am 14:21–37

    CAS  Google Scholar 

  16. Lee DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364: 369–379

    Article  Google Scholar 

  17. Trueta J (1959) The three types of acute hematogenous osteomyelitis: a clinical and vascular study. J Bone Joint Surg 41B:671–680

    Google Scholar 

  18. Elgazzar AH, Abdel-Dayem HM (1999) Imaging skeletal infections: evolving considerations. In: Freeman LM (ed) Nuclear medicine annual. Lippincott Williams and Wilkins, Philadelphia, pp 157–191

    Google Scholar 

  19. Elgazzar AH, Abdel-Dayem HM, Clark J, Maxon HR (1995) Multimodality imaging of osteomyelitis. Eur J Nucl Med 22:1043–1063

    Article  PubMed  CAS  Google Scholar 

  20. Torda AJ, Gottlieb T, Bradbury R (1995) Pyogenic vertebral osteomyelitis: analysis of 20 cases and review. Clin Infect Dis 20:320–328

    PubMed  CAS  Google Scholar 

  21. Song KS, Ogden JA, Ganey T, Guidera KT (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477

    Article  PubMed  CAS  Google Scholar 

  22. Ring D, Wenger DR, Johnson C (1994) Infectious spondylitis in children. The convergence of discitis and vertebral osteomyelitis. Orthop Trans 18:97–98

    Google Scholar 

  23. Waldvogel FA, Vasey H (1980) Osteomyelitis: the past decade. N Engl J Med 303:360–370

    Article  PubMed  CAS  Google Scholar 

  24. Babinchak TJ, Riley DK, Rotheram EB (1997) Pyogenic vertebral osteomyelitis of the posterior elements. Clin Infect Dis 25:221–224

    Article  PubMed  CAS  Google Scholar 

  25. Bauer TM, Pipperet H, Zimmerli W (1997) Vertebral osteomyelitis caused by group B streptococci [streptococcus agalactial] secondary to urinary tract infection. Eur J Microbial Infect Dis 16:244–246

    Article  CAS  Google Scholar 

  26. Perrone C, Saba J, Behloul Z, Salmon-Ceron D, Leport C, Vilde JL, Kahn MF (1994) Pyogenic and tuberculous spondylodiskitis [vertebral osteomyelitis] in 80 adult patients. Clin Infect Dis 19:746–750

    Google Scholar 

  27. Forrest RD, Jacobson CA, Yudkin JS (1986) Glucose intolerance and hypertension in north London: the Islington diabetes survey. Diabet Med 3:338–342

    Article  PubMed  CAS  Google Scholar 

  28. Bamberger DM, Daus GP, Gerding DN (1987) Osteomyelitis in the feet of diabetic patients: long term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med 83:653–660

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz GS, Berenyi MR, Siegel MW (1969) Atrophic arthropathy and diabetic neuritis. AIR 106:523–529

    Google Scholar 

  30. Horwitz SH (1993) Diabetic neuropathy. Clin Orthop 296:78–85

    Google Scholar 

  31. Gold RH, Tang DTF, Crim JR, Seeger LL (1995) Imaging the diabetic foot. Skeletal Radiol 24:563–571

    Article  PubMed  CAS  Google Scholar 

  32. Rand JA (1995) Preoperative planning for total knee arthroplasty. In: Callaghan JJ, Dennis DA, Paprosky WG, Rosenberg AG (eds) Orthopedic knowledge update. Hip and knee reconstruction. American Academy of Orthopedic Surgeons, Rosemont, IL

    Google Scholar 

  33. American Academy of Orthopaedic Surgeons (1995) Proceedings of the American Academy of Orthopaedic Surgeons. AAOS, Rosemont, IL, pp 255–263

    Google Scholar 

  34. Griffiths HJ (1995) Orthopedic complications. Radiol Clin North Am 33:401–410

    PubMed  CAS  Google Scholar 

  35. Seabald JE, Nepola JV (1999) Imaging techniques for evaluation of postoperative orthopedic infections. Q J Nucl Med 43:21–28

    Google Scholar 

  36. Harris WH, Sledge CB (1990) Total hip and total knee replacement, part I. N Engl J Med 323:725–731

    Article  PubMed  CAS  Google Scholar 

  37. Harris WH, Sledge CB (1990) Total hip and total knee replacement, part II. N Engl J Med 323:801–807

    Article  PubMed  CAS  Google Scholar 

  38. Johnson JA, Christle MJ, Sandler MP, Parks PF Jr, Horma L, Kayle JJ (1988) Detection of occult infection following total joint arthroplasty using sequential technetium-99m HDP bone scintigraphy and indium-111 WBC imaging. J Nucl Med 29:1347–1353

    PubMed  CAS  Google Scholar 

  39. Hendrix RW, Anderson TM (1981) Arthrographic and radiologic evaluation of prosthetic joints. Radiol Clin North Am 19:349–364

    PubMed  CAS  Google Scholar 

  40. Griffiths HJ, Lovelock JE, Evarts CM (1984) The radiology of total hip replacement. Skel Radiol 12:1–11

    Article  CAS  Google Scholar 

  41. Barton LL, Dunkle LM, Habib FH (1987) Septic arthritis in childhood: a 13-year review. Am J Dis Child 141:898–900

    PubMed  CAS  Google Scholar 

  42. Welkon CJ, Long SS, Fisher MC, Alburger PD (1986) Pyogenic arthritis in infants and children: a review of 95 cases. Pediatr Infect Dis 5:669–676

    Article  PubMed  CAS  Google Scholar 

  43. Silberstein EB, Elgazzar AH, Fernandez-Uloa M, Nishiyama H (1996) Skeletal scintigraphy in non-neoplastic osseous disorders. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1141–1197

    Google Scholar 

  44. Waldvogel FA, Medoff G, Swartz MN (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects, part I. N Engl J Med 282:198–206

    Article  PubMed  CAS  Google Scholar 

  45. Handmaker H. Leonards R (1976) The bone scan in inflammatory osseous disease. Semin Nucl Med 6:95–105

    Article  PubMed  CAS  Google Scholar 

  46. Connolly LP, Connolly SA, Drubach LA, Jaramillo D, Treves ST (2002) Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI. J Nucl Med 43:1310–1316

    PubMed  Google Scholar 

  47. Tuson GE, Hoffman EB, Mann MD (1994) Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg (Br) 76B:306–310

    Google Scholar 

  48. Handmaker H, Giammona ST (1984) Improved early diagnosis of acute inflammatory skeletal—articular diseases in children: A two radiopharmaceutical approach. Pediatrics 73:661–669

    PubMed  CAS  Google Scholar 

  49. Sfakianakis GN, Scoles P, Welch M, et al (1978) Evolution of the bone imaging findings in osteomyelitis. J Nucl Med 19:706

    Google Scholar 

  50. Pennington WT, Mott MP, Thometz JG, Sty JR, Metz D (1999) Photopenic bone scan osteomyelitis: A clinical perspective. J Ped Orthoped 19:695–698

    Article  CAS  Google Scholar 

  51. Johnson JE, Kennedy EJ, Shereff MJ, Patel NC, Collier BD (1996) Prospective study of bone, In-111 labeled white blood cell and gallium scanning for the evaluation of osteomyelitis in the diabetic foot. Foot Ankle Int 17:10–16

    PubMed  CAS  Google Scholar 

  52. Grerand S, Dolan M, Laing P, Bird M, Smith ML, Klenerman L (1996) Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg (Br) 78B:51–55

    Google Scholar 

  53. Ezuddin S. Yuille D, Spiegelhoff D (1992) The role of dual bone and WBC scan imaging in the evaluation of osteomyelitis and cellulitis using both planar and SPECT imaging. J Nucl Med 33:839

    Google Scholar 

  54. Seabold JE, Nepola JV, Marsh JL et al (1991) Postoperative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 180:741–747

    PubMed  CAS  Google Scholar 

  55. Palestro CJ, Swyer AI, Kim CK et al (1991) Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid and Tc-99m MDP imaging. Radiology 1179:645–648

    Google Scholar 

  56. Bihl H, Rossler B, Borr U (1992) Assessment of infectious conditions in the musculoskeletal system: experience with Tc-99m MDP imaging. Radiology 1179:645–648

    Google Scholar 

  57. Hakki S, Harwood SJ, Morrissey MA, et al (1997) Comparative study of monoclonal antibody scan in diagnosing orthopedic infection. Clin Orthop 335:275–285

    PubMed  Google Scholar 

  58. Harwood SJ, Valsivia S, Hung GL, et al (1999) Use of Saluesomab, a radiolababeled antibody fragment to detect osteomyelitis in diabetic patients with foot ulcers by leucoscintigraphy. Clin Infect Dis 28:1200–1205

    Article  PubMed  CAS  Google Scholar 

  59. Devillers A, Garin E, Polard JL, Poirier JY, Arvieux C, Girault S, Moisan A, Bouruet P (2000) Comparison of Tc-99m-labeled antileukocyte fragments Fab’ and Tc-99m-HMPAO-labeled leukocyte (HMPAO-LS) scintigraphy in the diagnosis of bone and joint infections: a prospective study. Nucl Med Commun 21:747–753

    Article  PubMed  CAS  Google Scholar 

  60. Ryan PJ (2002) Leukoscan for orthopaedic imaging in clinical practice. Nucl Med Commun 23:707–714

    Article  PubMed  Google Scholar 

  61. Palestro CJ, Caprioli R, Love C, Richardson HL, Kipper SL, Weiland FL, Thomas MB (2003) Rapid diagnosis of pedal osteomyelitis in diabetics with technetium-99m labeled monoclonal antigranulocyte antibody. J Foot Ankle Surg 42:2–8

    Article  PubMed  Google Scholar 

  62. Rothenberg TV Schaffstein J, Ludwig J, Vehling D, Koster O, Schmid G (2003) Imaging osteomyelitis with Tc99m-labeled antigranulocyte antibody Fab fragments. Clin Nucl Med 28:643–647

    Article  Google Scholar 

  63. Riebel T, Nasir R, Nazarenko OC (1996) The value of sonography in the detection of osteomyelitis. Pediatr Radiol 26:291–197

    Article  PubMed  CAS  Google Scholar 

  64. Berquist TH, Brown ML, Fitzgerald RH et al (1985) Magnetic resonance imaging: application in musculoskeletal infection. Mag Res Imaging 3:219–230

    Article  CAS  Google Scholar 

  65. Koort J, Makinen TJ, et al (2004) Comparative 18F-FDG PET of experimental S. aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  66. Newman LG, Waller J, Palestro CJ, Schwantz M, Klein MJ, Hermann G, Harrington E, Harrington M, Roman SH, Stagnaro-Green A (1991) Unsuspected osteomyelitis in diabetic foot ulcers: diagnosis and monitoring by leukocyte scanning with In-111 oxyquinoline. JAMA 266:1246–1251

    Article  PubMed  CAS  Google Scholar 

  67. Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN, Tomas MB, Marwin SE (1998) Marrow versus infection in Charcot joint: indium-111 leukocyte and technetium 99m sulfur colloid scintigraphy. J Nucl Med 39:349–350

    Google Scholar 

  68. Tailji S, Yacoub TY, Abdella N, Albunni A, Mahmoud A, Doza B, Loutfi I, Al-Za’abi K, Heiba S, Elgazzar A (1999) Optimization of simultaneous dual In-111 labeled leukocytes (WK) and Tc-99m MDP bone scans in diabetic foot. Eur J Nucl Med 26:1201

    Google Scholar 

  69. Poirier JY, Garin E, Derrien C, Devillers A, Moisan A, Bourguet P, Maugendre D (2002) Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99mTc-MDP bone scintigraphy. Diabetes Metabol 28:485–490

    CAS  Google Scholar 

  70. Mason MD, Zlatkin MB, Esterhai IL, et al (1989) Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. Radiology 173:355–359

    PubMed  CAS  Google Scholar 

  71. Newman LG, Waller J, Palestro CJ, Hermann G, Klein MJ, Schwatrz M, Harrington E et al (1992) Leukocyte scanning with 111-In is superior to magnetic resonance imaging in diagnosis of clinically unsuspected osteomyelitis in diabetic foot ulcers. Diabetes Care 15:1527–1530

    Article  PubMed  CAS  Google Scholar 

  72. Cook TA, Rahim N, Simpson HC, Galland RB (1996) Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg 83:245–248

    Article  PubMed  CAS  Google Scholar 

  73. Morrison W, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR (1995) Osteomyelitis in diabetics: clinical accuracy, surgical utility and cost effectiveness of MR imaging. Radiology 196:557–564

    PubMed  CAS  Google Scholar 

  74. Beltran J, Campanini DS, Knight C, McCalla M (1990) The diabetic foot: Magnetic resonance imaging. Skeletal Radiol 19:37–41

    Article  PubMed  CAS  Google Scholar 

  75. SNM 51st Annual Meeting: Abstract 217. Presented June 21, 2004

    Google Scholar 

  76. Abbey DM, Hosea SW (1989) Diagnosis of vertebral osteomyelitis in a community hospital by using computed tomography. Arch Intern Med 149:2029–2035

    Article  PubMed  CAS  Google Scholar 

  77. Meyers P, Wiener S (1991) Diagnosis of hematogenous pyogenic vertebral osteomyelitis by magnetic resonance imaging. Arch Intern Med 151:683–687

    Article  PubMed  CAS  Google Scholar 

  78. Modic MT, Feiglin DH, Piraino DW (1985) Vertebral osteomyelitis: assessment using MR. Radiology 157:157–166

    PubMed  CAS  Google Scholar 

  79. Schlaeffer F, Mikolich DJ, Mates SM (1987) Technetium-99m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis. Arch Intern Med 147:2024–2026

    Article  PubMed  CAS  Google Scholar 

  80. Kern RZ, Houpt TB (1984) Pyogenic vertebral osteomyelitis: diagnosis and management. Can Med Assoc J 130:1025–1028

    PubMed  CAS  Google Scholar 

  81. Rubin RH, Fischman AJ, Callahan RJ (1989) Indium-111 labeled nonspecific immunoglobulin scanning in the detection of focal infection. N Engl J Med 321:935–940

    Article  PubMed  CAS  Google Scholar 

  82. Lisbona R, Derbekyan V, Novales-Diaz J et al (1993) Gallium-67 scintigraphy in tuberculosis and non-tuberculosis infectious spondylitis. J Nucl Med 34:853–859

    PubMed  CAS  Google Scholar 

  83. Love C, Petel M, Lonner BS, Tomas MB, Palestro CJ (2000) Diagnosing spinal osteomyelitis: A comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 25:963–977

    Article  PubMed  CAS  Google Scholar 

  84. Quinn SF, Murray W, Clark RA (1988) MR imaging of chronic osteomyelitis. J Comput Assist Tomogr 12:113–117

    Article  PubMed  CAS  Google Scholar 

  85. Cahill DW, Love LC, Rechtine GR (1991) Pyogenic osteomyelitis of the spine in the elderly. J Neurosurg 74:878–886

    Article  PubMed  CAS  Google Scholar 

  86. Whalen IL, Brown ML, McLeod R et al (1991) Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine 16:193–197

    PubMed  CAS  Google Scholar 

  87. Palestro Cl, Kim CK, Swyer Al et al (1991) Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 32:1861–1865

    PubMed  CAS  Google Scholar 

  88. Fernandez-Ulloa M, Vasavada Pl, Hanslits MJ et al (1985) Vertebral osteomyelitis imaging with In-111-labeled white blood cells and Tc-99m bone scintigrams. Orthopedics 8:1144–1150

    PubMed  CAS  Google Scholar 

  89. Hovi I (1996) Complicated bone and soft tissue infections: imaging with 0.1 MR and Tc99m HMPAO labeled leukocytes. Acta Radiol 37:870–876

    Article  PubMed  CAS  Google Scholar 

  90. Stumpe KDM, Zanetti M, Weishaupt D, Hodler J, Boos N, Schulthess GK (2002) FDG positron emission tomography for differentiation of degenerative and infectious end plate abnormalities in the lumbar spine detected on MR imaging. AJR 179:1151–1157

    PubMed  Google Scholar 

  91. Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ (1986) Chronic osteomyelitis: bone and gallium scan patterns associated with active disease. Radiology 158:685–688

    PubMed  CAS  Google Scholar 

  92. Tumeh SS, Tohmeh AG (1991) Nuclear medicine techniques in septic arthritis and osteomyelitis. Rheum Dis Clin North Am 17:559–583

    PubMed  CAS  Google Scholar 

  93. Krznaric E, De Roo M, Verbruggen A, Stuyck J, Mortelinans L (1996) Chronic osteomyelitis: diagnosis with technetium 99m d,1-hexamethylpropylene amine oxime labeled leukocytes. Eur J Nucl Med 23:792–797

    Article  PubMed  CAS  Google Scholar 

  94. Erdman WA, Tamburro F, Jayson HT, Weatherall PT, Ferry KB, Peshoch RM (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 180:533–539

    PubMed  CAS  Google Scholar 

  95. Sciuk J, Brandau W, Vollet B, Stucker R, Erlemann R, Bartenstein P et al (1991) Comparison of technetium-99m polyclonal human immunoglobulin and technetium-99m monoclonal antibodies for imaging chronic osteomyelitis. Eur J Nucl Med 18:401–407

    Article  PubMed  CAS  Google Scholar 

  96. Guhlmann A, Brecht-Krauss D, Sugar G, Glatting G, Kotzerke J, Kinzi L, Reske SN (1998) Chronic osteomyelitis: detection with FDGPET and correlation with histopathologic findings. Radiology 206:749–753

    PubMed  CAS  Google Scholar 

  97. Zhuang HM, Duarte PS, Poudehnad M, et al (2000) The exclusion chronic osteomyelitis with F-18 fluorodeoxy-glucose positron tomography imaging. Clin Nucl Med 25:281–284

    Article  PubMed  CAS  Google Scholar 

  98. De Winter F, Dierckx R, De Bondt P, et al (2000) FDG PET as a single technique is more accurate than the combination bone scan/white blood cell scan in chronic orthopedic infection (COI). J Nucl Med 41:59 (Abstract)

    Google Scholar 

  99. De Winter F, Van de Wiele C, Vandenberghe S, de Bondt P, de Clercq D, D’Asseler Y, Dierckx R (2001) Coincidence camera FDG for the diagnosis of chronic orthopedic infections: A feasibility study. J Comput Assist Tomogr 25:184–189

    Article  PubMed  Google Scholar 

  100. Zaknun JJ, Zangerle R, Gabriel M, Virolini I (2005) F18 FDG-PET for monitoring disease activity in an HIV-1 positive patient with disseminated chronic osteomyelitic brucellosis due to Brucella melitensis. Eur J Nucl Med Mol Imaging 32:630

    Article  PubMed  Google Scholar 

  101. Love CH, Tomas MB, Marwin SE, Pugliese PV, Palestro CHF (2001) Role of nuclear medicine in diagnosis of the infected joint replacement. Radiographics 21:1229–1238

    PubMed  CAS  Google Scholar 

  102. Oswald SG, VanNostrand D, Savory CG, Callaghan JJ (1989) Three phase bone scan and indium white blood cell scintigraphy following porous-coated hip arthroplasty: a prospective study of the prosthetic hip. J Nucl Med 30:1321–1331

    PubMed  CAS  Google Scholar 

  103. Oswald SG, VanNostrand D, Savory CG, Anderson JH, Callaghan JJ (1990) The acetabulum: a prospective study of three-phase bone and indium white blood cell scintigraphy following porous coated hip arthroplasty. J Nucl Med 31:274–280

    PubMed  CAS  Google Scholar 

  104. Rosenthal L, Lepanto L, Raymond F (1987) Radiophosphate uptake in asymptomatic knee arthroplasty. J Nucl Med 28:1546–1549

    Google Scholar 

  105. Elgazzar AH, Yeung HW, Webner PJ (1996) Indium-111 leukocyte and technetium 99m sulfur colloid uptake in Paget’s disease. J Nucl Med 37:858–861

    PubMed  CAS  Google Scholar 

  106. Oyen WJG, VanHorn JR, Claessens RAMJ, Slooff JJH, Van der Meer JWM, Corstens HM (1992) Diagnosis of bone, joint and joint prosthesis infections with In-111-labeled nonspecific human immunoglobulin G scintigraphy. Radiology 182:195–199

    PubMed  CAS  Google Scholar 

  107. Zhuang H, Durate PS, Pourdehnad M, et al (2001) The promising role of F-18-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48

    PubMed  CAS  Google Scholar 

  108. Chacko TK, Zhuang H, Stevenson K, Moussavian B, Alavi A (2002) The influence of the location of fluodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun 23:851–855

    Article  PubMed  CAS  Google Scholar 

  109. Mandell GA (1996) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 26:218–237

    Article  PubMed  CAS  Google Scholar 

  110. Amunden TR, Siegel MJ, Siegel BA (1984) Osteomyelitis and infarction in sickle cell hemoglobinopathies: differentiation by combined technetium and gallium scintigraphy. Radiology 153:807–812

    Google Scholar 

  111. Jaramillo D, Treves ST, Kasser JR, Harper M, Sundel R, Laor T (1995) Osteomyelitis and septic arthritis in children. Appropriate use of imaging to guide treatment. AJR 165:399–403

    PubMed  CAS  Google Scholar 

  112. Sundberg SB, Savage JP, Foster BK (1989) Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood. J Pediatr Orthop 9:579–585

    PubMed  CAS  Google Scholar 

  113. Gilday DL, Paul DJ, Paterson J (1975) Diagnosis of osteomyelitis in children by combined blood pool and bone imaging. Radiology 117:331–335

    PubMed  CAS  Google Scholar 

  114. Greyson ND, Tepperman PS (1984) Three-phase bone studies in hemiplegia with reflex sympathetic dystrophy and the effect of disuse. J Nucl Med 25:423–429

    PubMed  CAS  Google Scholar 

  115. McAffe JG, Roba RC, Majid M (1995) The musculoskeletal system. In: Wagner HN (ed) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 986–1020

    Google Scholar 

  116. Graham J, Wood SK (1976) Aseptic necrosis of bone following trauma. In: Davidson JK (ed) Aseptic necrosis of bone. Excerpta Medica, Amsterdam, p 101

    Google Scholar 

  117. Resnick D (1989) Bone and joint imaging. Saunders, Philadelphia, pp 979–999

    Google Scholar 

  118. Fragniere B, Chotel F, Vargas Barreto B, Berard J (2001) The value of early postoperative bone scan in slipped capital femoral epiphysis. J Pediatr Orthopaed B 10:51–55

    Article  CAS  Google Scholar 

  119. Conway JJ (1993) A scintigraphic classification of Legg-Calvé-Perthes disease. Semin Nucl Med 23:274–295

    Article  PubMed  CAS  Google Scholar 

  120. Tsao AK, Dias LS, Conway JJ, Straka P (1997) The prognostic value and significance of serial bone scintigraphy in Legg-Calvé-Perthes disease. J Pediatr Orthoped 20:463–470

    Google Scholar 

  121. de Sanctis N, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI, part II: pathomorphogenesis and new classification. J Pediatr Orthoped 17:230–239

    Google Scholar 

  122. Comte F, De Rosa V, Zekri H, Eberle MC, Dimeglio A, Rossi M, Mariano-Goulart D (2003) Confirmation of the early prognostic value of bone scanning and pinhole imaging of the hip in Legg-Calvé-Perthes disease. J Nucl Med 44:1761–1766

    PubMed  Google Scholar 

  123. Resnick D, Niwayama G (1998) Osteonecrosis: diagnostic techniques and complications. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, p 3268

    Google Scholar 

  124. Smith JA (1996) Bone disorders in sickle cell disease. Hematol Oncol Clin North Am 10:1345–1346

    Article  PubMed  CAS  Google Scholar 

  125. Kim SK, Miller JH (2002) Natural history and distribution of bone and bone marrow infarction in sickle cell hemoglobinopathies. J Nucl Med 43:896–900

    PubMed  Google Scholar 

  126. Keeley K, Buchanan GR (1982) Acute infarction of long bones in children with sickle cell anemia. J Pediatr 101:170–175

    Article  PubMed  CAS  Google Scholar 

  127. Skaggs DL, Kim SK, Green NW, Harris D, Miler JH (2001) Differentiation between bone infarct and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 83:1810–1813

    PubMed  Google Scholar 

  128. Sisayan R, Elgazzar AH, Webner P, Religioso DG (1996) Impact of bone scintigraphy on clinical management of a sickle cell patient with recent chest pain. Clin Nucl Med 21:523–526

    Article  PubMed  CAS  Google Scholar 

  129. Kawai K, Maruno H, Watanabe Y, Hirohata K (1980) Fat necrosis of osteocytes as a causative factor in idiopathic osteonecrosis inheritable hyperlipemic rabbits. Clin Orthop Relat Res 153:273

    PubMed  Google Scholar 

  130. Collier BD, Carrera GF, Johnson RP, Isitman AT, Hellman RS, Knobel J et al (1985) Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med 26:979–987

    PubMed  CAS  Google Scholar 

  131. Greyson ND, Lotem MM, Gross AE (1982) Radionuclide evaluation of spontaneous femoral osteonecrosis. Radiology 142:729–735

    PubMed  CAS  Google Scholar 

  132. Holder LE, Cole LA, Myerson MS (1992) Reflex sympathetic dystrophy in the foot: clinical and scintigraphic criteria. Radiology 184:531–535

    PubMed  CAS  Google Scholar 

  133. Kozin F (1994) Reflex sympathetic dystrophy syndrome. Curr Opin Rheumatol 6:210–216

    Article  PubMed  CAS  Google Scholar 

  134. Schwartzman RJ, Popescu A (2002) Reflex sympathetic dystrophy. Curr Rheumatol Rep 4:165–169

    Article  PubMed  Google Scholar 

  135. Janig W, Baron R (2003) Complex regional pain syndrome: mystery explained? Lancet Neurol 2:687–697

    Article  PubMed  Google Scholar 

  136. Stanton-Hicks M, Janig W, Hassenbusch S, Haddox JD, Boas R, Wilson P (1995) Reflex sympathetic dystrophy: changing concepts and taxonomy. Pain 63:127–133

    Article  PubMed  CAS  Google Scholar 

  137. Shehab D, Al-Jarralah K, Al-Awadhi A et al (1999) Reflex sympathetic dystrophy: an under-recognized entity in Kuwait. APLAR J Rheumatol 3:343–347

    Google Scholar 

  138. Blockx P, Driessens M (1991) The use of Tc-99-m-HSA dynamic vascular examination in the staging and therapy monitoring of reflex sympathetic dystrophy. Nucl Med Commun 12:725–731

    Article  PubMed  CAS  Google Scholar 

  139. Goldstein DS, Tack C, Li TS (2000) Sympathetic innervation and function in reflex sympathetic dystrophy. Ann Neurol 48:49–59

    Article  PubMed  CAS  Google Scholar 

  140. Sankaya A, Sankaya I, Pekindil G, Firat MF, Pekindil Y (2001) Technetium-99m sestamibi limb scintigraphy in post-traumatic reflex sympathetic dystrophy: preliminary results. Eur J Nucl Med 28:1517–1522

    Article  CAS  Google Scholar 

  141. Haensch C, Jorg J, Lerch H (2002) I-123 metaiodobenzylguanidine uptake of the forearm shows dysfunction of sympathetic mediated neurovascular transmission in complex regional pain syndrome 1 (CRPS 1). J Neurol 249:1742–1743

    Article  PubMed  CAS  Google Scholar 

  142. Tsuyuguchi N, Ohata K, Morino M, Takami T, Goto T, Nishio A, Hara M, Sunada I (2002) Magnetic resonance imaging and [11c] methyl-l-methionine positron emission tomography of fibrous dysplasia—two case reports. Neurologia Medico-Chirurgica 42:341–345

    Article  PubMed  Google Scholar 

  143. Han J, Ryu JS, Shin MJ, Kang GH, Lee HK (2000) Fibrous dysplasia with barely increased uptake on bone scan: a case report. Clin Nucl Med 25:785–788

    Article  PubMed  CAS  Google Scholar 

  144. Kairemo KJ, Verho S, Dunkel L (1999) Imaging of McCune Albright syndrome using bone single photon emission computed tomography. Eur J Pediatr 158:123–126

    Article  PubMed  CAS  Google Scholar 

  145. Mourad A (1998) Alterations of musculoskeletal function. In: McCance KL, Huether SE (eds) Pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1435–1485

    Google Scholar 

  146. Holder LE, Michael RH (1984) The specific scintigraphic pattern of shin splints in the lower leg: concise communication. J Nucl Med 25:865–869

    PubMed  CAS  Google Scholar 

  147. Reed A, Joyner C, Brawnlow H, Simpson H (2001) Radiological classification of human nonunions does not reflect biological activity. Proceeding of the 47th annual meeting, Orthopedic Research Society, San Francisco, pp 971

    Google Scholar 

  148. Sty JR, Starshak RJ (1983) The role of bone scintigraphy in the evaluation of the suspected abused child. Radiology 146:369–375

    PubMed  CAS  Google Scholar 

  149. Malki A, Elgazzar A, Ashqar T, Owunwanne A, Abdel-Dayem AH (1992) New technique for assessing muscle damage after trauma. J R Coll Surg Edin 37:131–133

    CAS  Google Scholar 

  150. Malki A, Owunwanne A, Elgazzar A, Abdel-Dayem AH (1999) Assessment of skeletal muscle damage in experimental animal using In-111 antimyosin. J Surg Invest 1:99–105

    CAS  Google Scholar 

  151. Sharkey CA, Harcke HT, Mandell GA, et al (1986) SPECT techniques in the evaluation of growth plate abnormalities about the knee. J Nucl Med Tech 14:Ab13

    Google Scholar 

  152. Harcke HT, Zapf SE, Mandell GA, et al (1987) Angular deformity of the lower extremity: Evaluation with quantitative bone scintigraphy. Radiology 164:437–440

    PubMed  CAS  Google Scholar 

  153. Harcke HT (1978) Bone imaging in infants and children: A review. J Nucl Med 19:324–329

    PubMed  Google Scholar 

  154. Mandell GA (1998) Nuclear medicine in pediatric orthopedics. Semin Nucl Med 28:95–115

    Article  PubMed  CAS  Google Scholar 

  155. Harcke HT, Mandell GA (1993) Scintigraphic evaluation of the growth plate. Semin Nucl Med 23:266–273

    Article  PubMed  CAS  Google Scholar 

  156. Etchebehere EC, Caron M, Pereira JA, Lima MC, Santos AO, Ramos CD, Barros FB, Sanches A, Santos-Jesus R, Belangero W, Camargo EE (2001) Activation of the growth plates on three-phase bone scintigraphy: the explanation for the overgrowth of fractured femurs. Eur J Nucl Med 28:72–80

    Article  PubMed  CAS  Google Scholar 

  157. Etchebehere EC, Etchebehere M, Gamba R, Belangero W, Camargo EE (1998) Orthopedic pathology of the lower extrem ities: scintigraphic evaluation in the high, knee, and leg. Semin Nucl Med 28:41–61

    Article  PubMed  CAS  Google Scholar 

  158. Wioland M, Bonnerot V (1993) Diagnosis of partial and total physeal arrest by single photon emission computed tomography. J Nucl Med 34:1410–1415

    PubMed  CAS  Google Scholar 

  159. Peterson HA (1984) Partial growth plate arrest and its treatment. J Pediatr Orthoped 4:246–258

    CAS  Google Scholar 

  160. DeCampo JF, Boldt DW (1986) Computed tomography in partial growth plate arrest: Initial experiences. Skeletal Radiol 183:119–123

    Google Scholar 

  161. Jaramillo D, Hoffer EA, Shapiro F, et al (1990) MR imaging of fracture of the growth plate. AJR 155:1261–265

    PubMed  CAS  Google Scholar 

  162. Khan A, Bilezikian J (2000) Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ 163:184–718

    PubMed  CAS  Google Scholar 

  163. Mills BG, Masuoka LS, Graham CC Jr et al (1988) Gallium-67 citrate localization in osteoclast nuclei of Paget’s disease of bone. J Nucl Med 29:1083

    PubMed  CAS  Google Scholar 

  164. Lander PH, Hadjipavlou AG (1986) A dynamic classification of Paget’s disease. J Bone Joint Surg [Br] 68B:431–438

    Google Scholar 

  165. Boutin RD, Spitz DJ, Newman JS, Lenchik L, Steinbach LS (1998) Complications in Paget disease at MR imaging. Radiology 209:641–651

    PubMed  CAS  Google Scholar 

  166. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (2001) Magnetic resonance appearance of uncomplicated Paget’s disease of bone. Semin Musculoskeletal Radiol 5:69–77

    Article  Google Scholar 

  167. Cherian RA, Haddaway MJ, Davie MW, McCall IW, Cassar-Pullicino VN (2000) Effect of Paget’s disease of bone on areal lumbar spine bone mineral density measured by DXA, and density of cortical and trabecular bone measured by quantitative CT. Br J Radiol 73:720–726

    PubMed  CAS  Google Scholar 

  168. Serafini AN (1976) Paget’s disease of bone. Semin Nucl Med 6:47–58

    Article  PubMed  CAS  Google Scholar 

  169. Fogelman I, Carr D (1980) A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol 31:321–326

    Article  PubMed  CAS  Google Scholar 

  170. King MA, Maxon HR (1984) Paget’s disease: The role of nuclear medicine in diagnosis and treatment. In: Silberstein EB (ed) Bone scintigraphy. Futura, Mount Kisco, New York, pp 333–346

    Google Scholar 

  171. Renier JC, Audran M (1997) Polyostotic Paget’s disease. A search for lesions of different durations and for new lesions. Revue du Rhumatisme (English edition) 64:233–242

    PubMed  CAS  Google Scholar 

  172. Kaplan FS (1987) Osteoporosis: Pathophysiology and prevention. Chin Sympozia 39:2

    Google Scholar 

  173. Matkovic V, De Kanic D (1989) Developing strong bones: The teenage female. In: Kleerehoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert, New York, pp 165

    Google Scholar 

  174. Gillespy T, Gillespy MP (1991) Osteoporosis. Radial Clin North Am 29:77–84

    Google Scholar 

  175. Christiansen C, Riis BJ (1989) Optimizing bone mass in the premenopause. In: Kleerehoper M, Krane SM (eds) Clinical disorder of bone and mineral metabolism. Mary Ann Liebert, New York, pp 189

    Google Scholar 

  176. Lang P, Steiger P, Faulkner K, et al (1991) Current techniques and recent developments in quantitative bone densitometry. Rad Clin North Am 29:49–76

    CAS  Google Scholar 

  177. Snyder W (1975) Report of the task group on reference man. Pergamon Press, Oxford

    Google Scholar 

  178. Recker RR, Heaney RP (1989) Effects of age, sex and race on bone remodeling. In: Kleerekoper MJ, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert, New York, p 59

    Google Scholar 

  179. Heaney RP (1989) Optimizing bone mass in the premenopause: calcium. In: Kleerehoper MJ, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert, New York, p 181

    Google Scholar 

  180. Frost HM (1964) Dynamics of bone remodelling. In: Frost HM (ed) Bone biodynamics. Little, Brown, Boston, pp 315–334

    Google Scholar 

  181. Ettinger B, Genant HK (eds) (1987) Osteoporosis update. Radiology Research and Education Foundation, San Francisco

    Google Scholar 

  182. Schwivitz S, Djukic S, Genant HK (1990) The current status of bone densitometry. Appl Radiol June 1990, pp 20–25

    Google Scholar 

  183. Cooper C, Aihie-Sayer A (1994) Osteoporosis: recent advances in pathogenesis and treatment. Q J Med 87:203–209

    PubMed  CAS  Google Scholar 

  184. Simon SR (1994) Osteoporosis: orthopedic basic science. American Academy of Orthopedic Surgeons, Chicago

    Google Scholar 

  185. Chen CC, Wang SS, Jeng FS, Lee SD (1996) Metabolic bone disease of liver cirrhosis: is it parallel to the clinical severity of cirrhosis? J Gastroenterol Hepatol 11:417–421

    Article  PubMed  CAS  Google Scholar 

  186. Fogelman I (1987) The bone scan in metabolic bone disease. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, Berlin Heidelberg New York, pp 73–88

    Google Scholar 

  187. Lack CA, Rarber JL, Rubin E (1999) The endocrine system. In: Rubin E, Farber JL (eds) Pathology, 3rd edn. Lippincott-Raven, Philadelphia, pp 1179–1183

    Google Scholar 

  188. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    PubMed  CAS  Google Scholar 

  189. Cummings SR, Black DM, Nevitt MC, et al. (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  190. Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338:736–746

    Article  PubMed  CAS  Google Scholar 

  191. Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK (1999) Radiation exposure in bone mineral assessment. Appl Rad Isotope 50:215–236

    Article  CAS  Google Scholar 

  192. WHO Technical Report Series 843 (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization, Geneva

    Google Scholar 

  193. Genant HK, Grampp S, Glüer C-C, et al (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    Article  PubMed  CAS  Google Scholar 

  194. Basha B, Rao DS, Han ZH, Parfitt AM (2000) Osteomalacia due to vitamin D depletion: A neglected consequence of intestinal malabsorption. Am J Med 108:296–300

    Article  PubMed  CAS  Google Scholar 

  195. Reginato AJ, Falasca GF, Pappu R, McKnight B, Agha A (1999) Musculoskeletal manifestations of osteomalacia: report of 26 cases and literature review. Semin Arthritis Rheumat 28:287–304

    Article  CAS  Google Scholar 

  196. Akbunar AT, Orhan B, Alper E (2000) Bone-scan-like pattern with 99mTc(V)-DMSA scintigraphy in patients with osteomalacia and primary hyperparathyroidism. Nucl Med Commun 21:181–185

    Article  PubMed  CAS  Google Scholar 

  197. Leitha T (1998) Rapid changes in the scintigraphic pattern in Tc-99m DPD whole-body scanning in metabolic bone disease. Clin Nucl Med 23:784–578

    Article  PubMed  CAS  Google Scholar 

  198. Sy WM, Mittal AK (1975) Bone scan in chronic dialysis patients with evidence of secondary hyperparathyroidism and renal osteodystrophy. Br J Radiol 48:878–884

    Article  PubMed  CAS  Google Scholar 

  199. Olmastroni M, Seracini D, Lavoratti G, Marin E, Masi A, Vichi G (1997) Magnetic resonance imaging of renal osteodystrophy in children. Pediatr Radiol 27:865–868

    Article  PubMed  CAS  Google Scholar 

  200. Goen G, Mazzaferro S (1994) Bone metabolism and its assessment in renal failure. Nephron J 67:383–401

    Article  Google Scholar 

  201. Olmastroni M, Seracini D, Lavoratti G, Marin E, Masi A, Vichi G (1997) Magnetic resonance imaging of renal osteodystrophy in children. Pediatr Radiol 27:865–868

    Article  PubMed  CAS  Google Scholar 

  202. Rosenberg AE (1991) The pathology of metabolic bone disease. Radiol Clin North Am 29:19–36

    PubMed  CAS  Google Scholar 

  203. Dabbagh S (1998) Renal osteodystrophy. Curr Opin Pediatr 10:190–196

    Article  PubMed  CAS  Google Scholar 

  204. Cicconetti A, Maffeini C, Piro FR (1999) Differential diagnosis in a case of brown tumor caused by primary hyperparathyroidism. Minerva Stomatologica 48:553–558

    PubMed  CAS  Google Scholar 

  205. Loder RT, Hensinger RN (1997) Slipped capital femoral epiphysis associated with renal failure osteodystrophy. J Pediatr Orthoped 17:205–211

    Article  CAS  Google Scholar 

  206. Savaci N, Avunduk MC, Tosum Z, Hosnuter M (2000) Hyperphosphatemic tumoral calcinosis. Plastic and Reconstruct Surg 105:162–165

    Article  CAS  Google Scholar 

  207. Rosenberg AE, Salusky IB, Ramirez JA, Goodman WG (1994) Disorders of bone and mineral metabolism in chronic renal failure. In: Holliday MA, Barrett TM, Arner ED (eds) Pediatric nephrology. Williams & Wilkins, Baltimore, pp 1287–1304

    Google Scholar 

  208. Yalcinkaya F, Ince E, Tumer N, Ensari A, Ozkaya N (2000) Spectrum of renal osteodystrophy in children on continuous ambulatory peritoneal dialysis. Pediatr Int 42:53–57

    Article  PubMed  CAS  Google Scholar 

  209. Jorgetti V, Lopez BD, Caorsi H, Ferreira A, Palma A, Menendez P, Douthat W, Olaizola I, Ribeiro S, Jarava C, Moreira E, Cannata J (2001) Different patterns of renal osteodystrophy in Ibero America. Am J Med Sci 320:76–80

    Article  Google Scholar 

  210. Sanchez CP, Salusky IB (1996) The renal bone diseases in children treated with dialysis. Adv Ren Replace Ther 3:14–23

    PubMed  CAS  Google Scholar 

  211. Olaizola I, Aznarez A, Jorgetti V, Petroglia A, Caorsi H, Acuna G, Fajardo L, Ambrosoni P, Mazzuchi N (1998) Are there any differences in the parathyroid response in the different types of renal osteodystrophy? Nephrol Dialysis Transplant 13 Suppl:15–18

    Article  Google Scholar 

  212. Fukagawa M, Akizawa T, Kurokawa K (2000) Is a plastic osteodystrophy a disease of malnutrition? Curr Opin Nephrol Hypertens 9:363–367

    Article  PubMed  CAS  Google Scholar 

  213. Alon US (2001) Preservation of bone mass in pediatric dialysis and transplant patients. Adv Ren Replace Ther 8:191–205

    Article  PubMed  CAS  Google Scholar 

  214. Kim CD, Kim SH, Kim YL, Cho DK, Lee JT (1998) Bone marrow immunoscintigraphy (BMIS): a new and important tool for the assessment of marrow fibrosis in renal osteodystrophy. Adv Periton Dialysis 14:183–187

    CAS  Google Scholar 

  215. Seggewiss R, Hess T, Fiehn C (2003) A family with a variant form of primary hypertrophic osteoarthropathy restricted to the lower extremities. Joint Bone Spine Revue Rhumatisme 70:230–233

    Article  Google Scholar 

  216. Howell DS (1985) Hypertrophic osteoarthropathy. In: McCarty DJ (ed) Arthritis and allied conditions, 10th edn. Lea and Febiger, Philadelphia, pp 1195–1201

    Google Scholar 

  217. Ali A, Tetalman MR, Fordham EW et al (1980) Distribution of hypertrophic pulmonary osteoarthropathy. AJR 134:771–780

    PubMed  CAS  Google Scholar 

  218. Wang CJ, Huang CH, Leung SW, Chen HC, Huang EY (1998) Hypertrophic osteoarthropathy in nasopharyngeal carcinoma patients: two case reports. Changgeng Yi Xue Za Zhi 21:222–226

    PubMed  CAS  Google Scholar 

  219. Morgan B, Coakley F, Finlay DB, Belton I (1996) Hypertrophic osteoarthropathy in staging skeletal scintigraphy for lung cancer. Clin Radiol 51:694–697

    Article  PubMed  CAS  Google Scholar 

  220. Albrecht S, Keller A (2003) Postchemotherapeutic reversibility of hypertrophic osteoarthropathy in a patient with bronchogenic adenocarcinoma. Clin Nucl Med 28:463–466

    Article  PubMed  CAS  Google Scholar 

  221. Rosenthall L (1991) Nuclear medicine techniques in arthritis. Rheum Dis Clin North Am 17:585–597

    PubMed  CAS  Google Scholar 

  222. McCarthy D (ed) (1984) Arthritis and allied conditions. Lea and Fabiger, Philadelphia

    Google Scholar 

  223. Goldenberg DL, Cohen AS (1978) Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine 57:239–252

    Article  PubMed  CAS  Google Scholar 

  224. Cindas A, Gokce-Kustal Y, Kirth PO, Caner B (2001) Scintigraphic evaluation of synovial inflammation in rheumatoid arthritis with (99m) technetium-labelled human polyclonal immunoglobulin G. Rheumatol Int 20:71–77

    Article  PubMed  CAS  Google Scholar 

  225. De Bois M, Arndt J, van der Velde EA et al (1992) 99mTc human immunoglobulin scintigraphy—a reliable method to detect joint activity in rheumatoid arthritis. J Rheumatol 19:1371–1376

    PubMed  Google Scholar 

  226. Weissberg DI, Resnick D, Taylor A et al (1978) Rheumatoid arthritis and its variants: analysis of scintiphotographic, radiographic and clinical examination. AJR 131:665–673

    PubMed  CAS  Google Scholar 

  227. Waxman AD, Ducker S, McKee D (1977) Evaluation of 99mTc diphosphonate kinetics and bone scan in patients with Paget’s disease before and after calcitonin treatment. Radiology 125:761–764

    PubMed  CAS  Google Scholar 

  228. Al-Janabi MA, Solanki K, Critchley M et al (1992) Radioleukoscintigraphy in osteoarthritis. Is there an inflammatory component? Nucl Med Commun 13:706–712

    Article  PubMed  CAS  Google Scholar 

  229. Berna L, Torres G, Diez C et al (1992) Technetium-99m human polyclonal immunoglobulin G studies and conventional bone scans to detect active joint inflammation in chronic rheumatoid arthritis. Eur J Nucl Med 19:173–176

    Article  PubMed  CAS  Google Scholar 

  230. Rupani HD, Holder LE, Espinola DA et al (1985) Threephase radionuclide bone imaging in sports medicine. Radiology 156:187–196

    PubMed  CAS  Google Scholar 

  231. Bahk Y (2000) Combined scintigraphic and radiographic diagnosis of bone and joint diseases, 2nd edn. Springer, Berlin

    Google Scholar 

  232. Kaye JJ (1990) Arthritis: roles of radiography and other imaging techniques in evaluation. Radiology 177:601–608

    PubMed  CAS  Google Scholar 

  233. Mijiyawa M (1995) Gout in patients attending the rheumatology unit of Lome Hospital. Br J Rheumatol 34:843–846

    Article  PubMed  CAS  Google Scholar 

  234. Koh WH, Seah A, Chai P (1998) Clinical presentation and disease associations of gout: a hospital-based study of 100 patients in Singapore. Ann Acad Med Singapore 27:7–10

    PubMed  CAS  Google Scholar 

  235. Sato J, Watanabe H, Shinozaki T, Fukuda T, Shirakura K, Takagishi K (2001) Gouty tophus of the patella evaluated by PET imaging. J Orthoped Sci 6:604–607

    Article  CAS  Google Scholar 

  236. George E, Creamer P, Dieppe PA (1994) Clinical subsets of osteoarthritis. J Musculoskeletal Med 11:14

    CAS  Google Scholar 

  237. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000) Joint injury in young adults and risk of subsequent knee and hip osteoarthritis. Ann Intern Med 133:321–328

    PubMed  CAS  Google Scholar 

  238. Garland D (1991) A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop Relat Res 263:13–29

    PubMed  Google Scholar 

  239. Nagaraj N, Elgazzar AH, Fernandez-Ulloa M (1995) Heterotopic ossification mimicking infection: scintigraphic evaluation. Clin Nucl Med 20:763–766

    Article  PubMed  CAS  Google Scholar 

  240. Orzel JA, Redd TG (1985) Heterotopic bone formation: clinical, laboratory and imaging correlation. J Nucl Med 26:125–132

    PubMed  CAS  Google Scholar 

  241. Elgazzar AH, Martich V, Gelfand MJ (1995) Advanced fibrodysplasia ossificans progressiva. Clin Nucl Med 20:519–521

    Article  PubMed  CAS  Google Scholar 

  242. Smith FW, Gilday DL (1980) Scintigraphic appearance of osteoid osteoma. Radiology 137:191–195

    PubMed  CAS  Google Scholar 

  243. Hod N, Fishman S, Horne T (2002) Detection of rhabdomyolysis associated with compartment syndrome by bone scintigraphy. Clin Nucl Med 27:885–886

    Article  PubMed  Google Scholar 

  244. Kawaguchi Y, Hasegawa T, Oka S, Sato C, Arima N, Norimatsu H (2001) Mechanism of intramedullary high intensity area on T2-weighted magnetic resonance imaging in osteoid osteoma: a possible role of COX-2 expression. Pathol Int 51:933–937

    Article  PubMed  CAS  Google Scholar 

  245. Dahlin DC, Coventry MB (1967) Osteosarcoma: a study of 600 cases. J Bone Joint Surg Am 49:101–110

    PubMed  CAS  Google Scholar 

  246. Robbin MR, Murphey MD (2000) Benign chondroid neoplasms of bone. Semin Musculoskelet Radiol 4:45–58

    Article  PubMed  CAS  Google Scholar 

  247. Elgazzar AH, Fernandez-Ulloa M, Silberstein EB (1993) Thallium 201 as a tumor imaging agent: current status and future consideration. Nucl Med Commun 14:96–103

    Article  PubMed  CAS  Google Scholar 

  248. Huvos AG (1991) Bone tumors; diagnosis, treatment and prognosis, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  249. Resnik D, Kyriakos M, Greenway GD (2002) Tumors and tumor-like lesions of bone. Diagnosis of bone and joint disorders, 4th edn. Saunders, Philadelphia, pp 3979–3985

    Google Scholar 

  250. Choi JJ, Murphey MD (2000) Angiomatous skeletal lesions. Semin Musculoskelet Radiol 4:103–112

    Article  PubMed  CAS  Google Scholar 

  251. Han BK, Ryu JS, Moon DH, Shin MJ, Kim YT, Lee HK (1995) Bone SPECT imaging of vertebral hemangioma: correlation with MR imaging and symptoms. Clin Nucl Med 20:916–921

    Article  PubMed  CAS  Google Scholar 

  252. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  253. Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, Burger C, Strauss LG (2001) Quantitative evaluation of skeletal tumors with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med 28:704–710

    Article  PubMed  CAS  Google Scholar 

  254. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission. Clin Nucl Med 25:874–878

    Article  PubMed  CAS  Google Scholar 

  255. Ell PJ, Dixon HJ, Abdullah AZ (1980) Unusual spread of juxtacortical osteosarcoma. J Nucl Med 21:190–191

    Google Scholar 

  256. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H Schober O (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  PubMed  CAS  Google Scholar 

  257. Yildiz C, Erler K, Atesalp AS, Basbozkurt M (2003) Benign bone tumors in children. Curr Opin Pediatr 15:58–67

    Article  PubMed  Google Scholar 

  258. Miller SL, Hoffer FA (2001) Malignant and benign bone tumors. Radiol Clin North Am 39:673–699

    Article  PubMed  CAS  Google Scholar 

  259. Buhler M, Binkert C, Exner GU (2001) Osteoid osteoma: technique of computed tomography-controlled percutaneous resection using standard equipment available in most orthopaedic operating rooms. Arch Orthopaed Trauma Surg 121:458–461

    Article  CAS  Google Scholar 

  260. Kawaguchi Y, Hasegawa T, Oka S, Sato C, Arima N, Norimatsu H (2001) Mechanism of intramedullary high intensity area on T2-weighted magnetic resonance imaging in osteoid osteoma: a possible role of COX-2 expression. Pathol Int 51:933–937

    Article  PubMed  CAS  Google Scholar 

  261. Ossiani M, Elgazzar AH (2003) Multiple osteochondroma (unpublished data)

    Google Scholar 

  262. Moser RP Jr, Masewell JF (1987) An approach to primary bone tumors. Radiol Clin North Am 25:1049–1093

    PubMed  Google Scholar 

  263. Woerthler K, Linder N, Gosheger G, Brinkschmidt C, Heindel W (2000) MR imaging of tumor-related complications. Eur Radiol 10:832–840

    Article  Google Scholar 

  264. Brian WE, Mirra JM, Luck JV Jr (1999) Benign and malignant tumors of bone and joint: their anatomical and theoretical basis with an emphasis on radiology, pathology and clinical biology II. Juxtacortical cartilage tumors. Skeletal Radiol 28:1–20

    Article  Google Scholar 

  265. Moody EB, Classman SB, Hansen AV, Lawrence SK, Delbeke D (1992) Nuclear medicine case of the day. AJR 158:1382–1386

    PubMed  CAS  Google Scholar 

  266. Siddiqui RA, Ellis JH (1982) “Cold spots” on bone scan at the site of primary osteosarcoma. In: Rossleigh MA, Smith J, Yeh SDJ, et al (1987) Case reports: A photopenic lesion in osteosarcoma. Br J Radiol 60:497–499

    Google Scholar 

  267. Bloem JL, Taminiau AHM, Eulderink F, Hermans J, Pauwels EKJ (1988) Radiologic staging of primary bone sarcoma: MR imaging, scintigraphy, angiography, and CT correlated with pathologic examination. Radiology 169:805–810

    PubMed  CAS  Google Scholar 

  268. McKillop JH, Etcubanas E, Goris ML (1981) The indications for and limitations of bone scintigraphy in osteogenic sarcoma. Cancer 48:1133–1138

    Article  PubMed  CAS  Google Scholar 

  269. Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk J, Heindel WL, Jurgens H, Schober O (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  PubMed  CAS  Google Scholar 

  270. Abdel-Dayem (1997) The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med 27:355–363

    Article  PubMed  CAS  Google Scholar 

  271. Burak Z, Ersoy O, Moretti JL, Erinc R, Ozcan Z, Dirlik A, Sabah D, Basdemir G (2001) The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 28:1341–1350

    Article  PubMed  CAS  Google Scholar 

  272. Gorlick R, Liao AC, Antonescu C, Huvos AG, Healey JH, Sowers R, Daras M, Calleja E, Wexler LH, Panicek D, Meyers PA, Yeh SD, Larson SM (2001) Lack of correlation of functional scintigraphy with (99m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 7:3065–3070

    PubMed  CAS  Google Scholar 

  273. Kaste SC, Billips C, Tan M, Meyer WH, Parham DM, Rao BN, Pratt CB, Fletcher BD (2001) Thallium bone imaging as an indicator of response and outcome in nonmetastatic primary extremity osteosarcoma. Pediatr Radiol 31:251–256

    Article  PubMed  CAS  Google Scholar 

  274. Franzius F, Bielack S, Flege S, Sciuk J, Jürgens H, Schober O (2002) Prognostic significance of 18F-FDG and 99Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    PubMed  CAS  Google Scholar 

  275. Murthy NJ, Rao H, Friedman AS (2000) Positive findings on bone scan in multiple myeloma. Southern Med J 93:1028–1029

    CAS  PubMed  Google Scholar 

  276. Waxman AD, Steimsen JK, Levine AM, et al (1981) Radiographic and radionuclide imaging in multiple myeloma: The role of gallium scintigraphy. Concise communication. J Nucl Med 22:232–236

    PubMed  CAS  Google Scholar 

  277. Watanabe N, Shimizu M, Kageyama M, Tanimura K, Kinuya S, Shuke N, Yokoyama K, Tonami N, Watanabe A, Seto H, Goodwin DA (1999) Multiple myeloma evaluated with Tl-201 scintigraphy compared with bone scintigraphy. J Nucl Med 40:1138–1142

    PubMed  CAS  Google Scholar 

  278. Alexandrakis MG, Kyriakou DS, Passam F, Koukouraki S, Karkavitsas N (2001) Value of Tc-99m sestamibi scintigraphy in the detection of bone lesions in multiple myeloma: comparison with Tc-99m methylene diphosphonate. Ann Hematol 80:349–353

    Article  PubMed  CAS  Google Scholar 

  279. Kusumoto S, Jinnai I, Itoh K, et al (1997) Magnetic resonance imaging patterns in patients with multiple myeloma. Br J Hematol 99:649–655

    Article  CAS  Google Scholar 

  280. Connolly LP, Drubach LA, Ted Treves S (2002) Applications of nuclear medicine in pediatric oncology. Clin Nucl Med 27:117–125

    Article  PubMed  Google Scholar 

  281. Hung GU, Tan TS, Kao CH, Wang SJ (2000) Multiple skeletal metastases of Ewing’s sarcoma demonstrated on FDG-PET and compared with bone and gallium scans. Kaohsiung J Med Sci 16:315–318

    PubMed  CAS  Google Scholar 

  282. Bar-Sever Z, Cohen IJ, Connolly LP, Horev G, Perri T, Treves T, Hardoff R (2000) Tc-99m MIBI to evaluate children with Ewing’s sarcoma. Clin Nucl Med 25:410–413

    Article  PubMed  CAS  Google Scholar 

  283. Dorland’s (1988) Illustrated medical dictionary, 27th edn. Saunders, Philadelphia, p 1016

    Google Scholar 

  284. Batson OV (1940) The function of the vertebral veins and their role in the spread of metastases. Ann Surg 112:138

    Article  PubMed  CAS  Google Scholar 

  285. Resnick D, Niwayama G (1998) Skeletal metastases. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, pp 3945–4010

    Google Scholar 

  286. Resnick D, Niwayama G, Galasko CSD (1981) Bone metastasis studied in experimental animals. Clin Orthop Rel Res 155:269

    Google Scholar 

  287. Galasko CSD (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop Relat Res 169:20

    PubMed  Google Scholar 

  288. Tondevold E, Eliasen P (1982) Blood flow rates in canine cortical and cancellous bone measured with Tc-99m, labeled human albumin microspheres. Acta Orthop Scand 53:7–11

    PubMed  CAS  Google Scholar 

  289. O’Connell MJ, Wahner HW, Ahmann DL et al (1978) Value of preoperative radionuclide bone scan in suspected primary breast carcinoma. Mayo Clin Proc 53:221–226

    PubMed  CAS  Google Scholar 

  290. Baker RR (1978) Preoperative assessment of patients with breast cancer. Surg Clin North Am 58:681–691

    PubMed  CAS  Google Scholar 

  291. Shutte H (1979) The influence of bone pain on the results of bone scans. Cancer 34:2039–2043

    Article  Google Scholar 

  292. Massie JD (1984) Bone scanning and metastatic disease. In: Proceedings of 35th annual meeting, South Eastern Chapter, Society of Nuclear Medicine, pp V1–V20

    Google Scholar 

  293. Wilner D (1982) Radiology of bone tumors and allied disorders. Saunders, Philadelphia, p 3641

    Google Scholar 

  294. Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 45:53–64

    PubMed  CAS  Google Scholar 

  295. Ron IG, Striecker A, Lerman H, Bar-Am A, Frisch B (1999) Bone scan and bone biopsy in the detection of skeletal metastases. Oncol Rep 61:185–188

    Google Scholar 

  296. Elgazzar AH, Abdel-Dayem HM, Shible O (1991) Brucellosis simulating metastases on Tc99m MDP bone scan. Clin Nucl Med 16:162–164

    Article  PubMed  Google Scholar 

  297. Goris ML, Basso LV, Etcubanas E (1980) Photopenic lesions in bone scintigraphy. Clin Nucl Med 5:299–301

    Article  PubMed  CAS  Google Scholar 

  298. Sy WM, Westring DW, Weinberger G (1975) Cold lesions on bone imaging. J Nucl Med 16:1013–1016

    PubMed  CAS  Google Scholar 

  299. Galasko CSD (1980) Mechanism of uptake of bone imaging isotopes by skeletal metastases. Clin Nucl Med 12:565

    Google Scholar 

  300. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Computer Assist Tomogr 23:123–129

    Article  CAS  Google Scholar 

  301. Taoka T, Mayr NA, Lee HJ, Yuh WT, Simonson TM, Rezai K, Berbaum KS (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. Am J Roentgenol 176:1525–1530

    CAS  Google Scholar 

  302. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 177:229–236

    PubMed  CAS  Google Scholar 

  303. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Yen RF (2000) Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res 20:2189–2192

    PubMed  CAS  Google Scholar 

  304. Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 40:1407–1413

    PubMed  CAS  Google Scholar 

  305. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus F18 PET. J Nucl Med 40:1623–1629

    PubMed  CAS  Google Scholar 

  306. Garcia JR, Simo M, Soler M, Perez G, Lopez S, Lomena F (2005) Relative roles of bone scintigraphy and positron emission tomography in assessing the treatment response of bone metastases. Eur J Nucl Med Mol Imaging 32:1243–1244

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elgazzar, A.H., Shehab, D. (2006). Musculoskeletal System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-47953-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47953-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23992-5

  • Online ISBN: 978-3-540-47953-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics