Skip to main content

Basis of 18F-FDG Positron Emission Tomography Imaging

  • Chapter
The Pathophysiologic Basis of Nuclear Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 359.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP (2000) Positron-emission tomography with [18F]fluorodeoxy glucose, part 1. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 126:549–559

    Article  PubMed  CAS  Google Scholar 

  2. Couturier O, Luxen A, Chatal JF, Vuillez JP, Rigo P, Hustinx R (2004) Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 31:1182–1206

    Article  PubMed  CAS  Google Scholar 

  3. Guyton AC, Hall JE (2000) Text book of medical physiology, 10th edn, Chap 4 [40–51]. WB Saunders, Philadelphia

    Google Scholar 

  4. Sviderskaya EV, Jazrawi E, Baldwin SA, Widnell CC, Pasternak CA (1996) Cellular stress causes accumulation of the glucose transporter at the surface of cells independently of their insulin sensitivity. J Membr Biol 149:133–140

    Article  PubMed  CAS  Google Scholar 

  5. Theorens B, Sarkar HK, Kaback HR, Lodish HF (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281–290

    Article  Google Scholar 

  6. Maher F (1995) Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia. J Neurosci Res 42:459–469

    Article  PubMed  CAS  Google Scholar 

  7. Rea S, James DE (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667–1677

    PubMed  CAS  Google Scholar 

  8. Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem 265:13276–13282

    PubMed  CAS  Google Scholar 

  9. Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404

    Article  PubMed  CAS  Google Scholar 

  10. Alavi A, Reivich M (2002) The conception of FDG-PET imaging. Semin Nucl Med 32:2–5

    Article  PubMed  Google Scholar 

  11. Nabi HA, Zubeldia JM (2002) Clinical applications of18F-FDG in oncology. J Nucl Med Tech 30:3–9

    Google Scholar 

  12. Kostakoglu L, Goldsmith SJ (2003) 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung and colorectal carcinoma. J Nucl Med 44:224–239

    PubMed  Google Scholar 

  13. Merrall NW, Plevin R, Gould GW (1993) Growth factor, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 5:667–675

    Article  PubMed  CAS  Google Scholar 

  14. Flier JS, Mueckler MM, Usher P, Lodish HF (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235:492–1495

    Article  Google Scholar 

  15. Rempel A, Bannasch P, Mayer D (1994) Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochem Biophys Acta 1219:660–668

    PubMed  Google Scholar 

  16. Mathupala SP, Rempel A, Pedersen PL (1995) Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 270: 16:918–925

    Google Scholar 

  17. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose up-take in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632

    PubMed  CAS  Google Scholar 

  18. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor I. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  19. Rajendran JG, Krohn KA (2005) Imaging hypoxia and angiogenesis in tumors. Radiol Clin Am 43:169–187

    Article  Google Scholar 

  20. Alavi A, Kung JW, Zhuang H (2004) Implication of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 34:56–69

    Article  PubMed  Google Scholar 

  21. Wahl RL (1999) Positron emission tomography in cancer patient management. Cancer J Sci Am 5:205–207

    PubMed  CAS  Google Scholar 

  22. Bozzetti F, Gavazzi C, Mariani L, Crippa F (2004) Glucose-based total parenteral nutrition does not stimulate glucose uptake by human tumours. Clin Nutr 23:417–421

    Article  PubMed  CAS  Google Scholar 

  23. Torizuka T, Cavo AC, Wahl RL (1997) Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, l-methionine and l-leucine. J Nucl Med 38:382–386

    PubMed  CAS  Google Scholar 

  24. Shin L, Katz DS, Yung E (2004) Hypermetabolism on F-18 FDG PET of multiple pulmonary nodules resulting from bronchiolitis obliterans organizing pneumonia. Clin Nucl Med 29:654–656

    Article  PubMed  Google Scholar 

  25. Keyes JW Jr, Chen MY, Watson NE Jr, Greven KM, McGuirt WF, Williams DW (1997) FDG PET in head and neck cancer. Am J Roentgenol 169:1663–1669

    Google Scholar 

  26. Bury T, Dowlati A, Paulus P, Hustinx R, Radermecker M, Rigo P (1996) Staging of non-small cell lung cancer by whole-body tomography. Eur J Nucl Med 23:204–206

    Article  PubMed  CAS  Google Scholar 

  27. Albes JM, Lietzenmayer R, Schott U, Schulen E, Wehrmann M, Ziemer G (1999) Improvement of non-small-cell lung cancer staging by means of positron emission tomography. Thorac Cardiovasc Surg 47:42–47

    Article  PubMed  CAS  Google Scholar 

  28. Coleman RE (1999) PET in lung cancer. J Nucl Med 40:814–820

    PubMed  CAS  Google Scholar 

  29. Ilknur AK, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in oncology, part II. The clinical value in detecting and staging primary tumors. J Cancer Res Clin Oncol 126:560–574

    Article  Google Scholar 

  30. Wahl RL (2001) Current status of PET in breast cancer imaging, staging, and therapy. Semin Roentgenol 36:250–260

    Article  PubMed  CAS  Google Scholar 

  31. Mankoff DA, Dunnwald LK, Gralow JR (2002) Blood flow and metabolism in locally advanced breast cancer (LABC): Relationship to response to therapy. J Nucl Med 43:500–509

    PubMed  Google Scholar 

  32. Chander S, Zingas AP, Bloom DA, Zak IT, Joyrich RN, Getzen TM (2004) Positron emission tomography in primary thyroid lymphoma. Clin Nucl Med 29:572–573

    Article  PubMed  Google Scholar 

  33. Diehl M, Graichen S, Menzel C, Lindhorst E, Grunwald F (2003) F-18 FDG PET in insular thyroid cancer. Clin Nucl Med 28:728–731

    Article  PubMed  Google Scholar 

  34. Park CH, Lee EJ, Kim JK, Joo HJ, Jang JS (2002) Focal F-18 FDG uptake in a nontoxic autonomous thyroid nodule. J Nucl Med 27:136–137

    Article  Google Scholar 

  35. Zhuang H, Duarte PS, Pourdehand M, Shnier D, Alavi A (2000) Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 25:281–284

    Article  PubMed  CAS  Google Scholar 

  36. Schoder H, Larson SM, Yeung HW (2004) PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45:72S–81S

    PubMed  Google Scholar 

  37. Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, Rigo P, Bartsch P (1999) Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 14:1376–1380

    Article  PubMed  CAS  Google Scholar 

  38. Magnani P, Carretta A, Rizzo G, Fazio F, Vanzulli A, Lucignani G, Zannini P, Messa C, Landoni C, Gilardi MC, Del Maschio A (1999) FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg 40:741–748

    CAS  Google Scholar 

  39. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, Herndon JE, Patz EF Jr (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809

    PubMed  CAS  Google Scholar 

  40. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:S1–S93

    Google Scholar 

  41. Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz PJ, Carbone GM, Spaulding MB (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760

    PubMed  CAS  Google Scholar 

  42. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci 97:9226–9233

    Article  PubMed  CAS  Google Scholar 

  43. Newberg A, Alavi A, Clark C (1998) The metabolic imaging severity rating scale (MISRS) in Alzheimer’s disease: comparison with quantitative data. Eur J Nucl Med 25:1068

    Google Scholar 

  44. Newberg AB, Alavi A (2005) Role of PET imaging in the management of patients with central nervous system disorders. Radiol Clin Am 43:49–65

    Article  Google Scholar 

  45. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry 159:738–745

    Article  PubMed  Google Scholar 

  46. Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 16:2–34

    Article  PubMed  CAS  Google Scholar 

  47. Salmon E, Sadzot B, Maquet P, Degueldre C, Lemaire C, Rigo P, Comar D, Franck G (1994) Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med 35:391–398

    PubMed  CAS  Google Scholar 

  48. Van Heertum RL, Tikofsky RS (2003) Positron emission tomography and single photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 33:77–85

    Article  PubMed  Google Scholar 

  49. Alavi A, Lakhani P, Mavi A, Kung JW, Zhuang H (2004) PET: a revolution in medical imaging. Radiol Clin N Am 42:983–1001

    Article  PubMed  Google Scholar 

  50. Kuhl DE, Metter EJ, Riege WH (1984) Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18]fluorodeoxyglucose method. Ann Neurol 15:419–424

    Article  PubMed  CAS  Google Scholar 

  51. Newberg AB, Alavi A, Berlin J, Mozley PD, O’Connor M, Sperling M (2000) Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. J Nucl Med 41(12):1964–1968

    PubMed  CAS  Google Scholar 

  52. Engle J Jr, Kuhl DE, Phelps ME, Rausch R, Nuwer M (1983) Local cerebral metabolism during partial seizures. Neurology 33:400–413

    Google Scholar 

  53. Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG, et al. (1983) [18F]flurodeoxyglucose positron emission tomography in refractory complex partial seizures. Am Neurol 14:429–437

    Google Scholar 

  54. Barrington SE, Koutroumanidis M, Agathonikou A, Marsden PK, Binnie CD, Polkey CE, Maisey MN, Panayiotopoulos CP (1998) Clinical value of “ictal” FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with partial epilepsies. Epilepsia 39:753–766

    Article  PubMed  CAS  Google Scholar 

  55. Gaillard WD, Kopylev L, Weinstein S, Conry J, Pearl PL, Spanaki MV, Fazilat S, Venzina LG, Dubovsky E, Theodore WH (2002) Low incidence of abnormal (18)FDG-PET in children with new-onset partial epilepsy: a prospective study. Neurology 58:717–722

    PubMed  CAS  Google Scholar 

  56. Ollenberger GP, Pyrne AJ, Berlangieri SU, Rowe CC, Pathmaraj K, Reutens DC, Berkovic SF, et al (2005) Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med 32:1311–1316

    Article  Google Scholar 

  57. Alavi A, Newberg AB (1996) Metabolic consequences of acute brain trauma: is there a role for PET? J Nucl Med 37:1170–1172

    PubMed  CAS  Google Scholar 

  58. Newberg AB, Alavi A (2003) Neuroimaging in patients with head injury. Semin Nucl Med 33:136–147

    Article  PubMed  Google Scholar 

  59. Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease determined by 18FDG and computed tomography scan. N Engl J Med 316:357–362

    Article  PubMed  CAS  Google Scholar 

  60. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by18FDG and computed tomographic scan. Ann Neurol 12:425–434

    Article  PubMed  CAS  Google Scholar 

  61. Lehrer DS, Christian BT, Mantil J, Murray AC, Buchsbaum BR, Oakes TR, Byne W, Kemether EM, Buchsbaum MS (2005) Thalamic and prefrontal FDG uptake in never medicated patients with schizophrenia. Am Psychiatry 162:931–938

    Article  Google Scholar 

  62. Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2006) Correlations between volumes of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 9; 392:16–21

    Article  CAS  Google Scholar 

  63. Fumal A, Laureys S, Di Clemente L, Boly M, Bohotin V, Vandenheede M, Coppola G, Salmon E, Kupers R, Schoenen J (2005) Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 5 (ahead of print)

    Google Scholar 

  64. Newberg A, Cotter A, Udeshi M, Brinkman F, Glosser G, Alavi A, Clark C (2003) Brain metabolism in the cerebellum and visual cortex correlates with neuropsychological testing in patients with Alzheimer’s disease. Nucl Med Commun 24:785–790

    Article  PubMed  CAS  Google Scholar 

  65. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, et al (2001) Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 286:2120–2127

    Article  PubMed  CAS  Google Scholar 

  66. Lee BY, Newberg AB, Liebeskind DS, Kung J, Alavi A (2004) FDG-PET findings in patients with suspected encephalitis. Clin Nucl Med 29:620–625

    Article  PubMed  Google Scholar 

  67. Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR (1989) Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 13:317–324

    Article  PubMed  CAS  Google Scholar 

  68. Araujo LI, Camici P, Spinks TJ, Jones T, Maseri A (1988) Abnormalities in myocardial metabolism in patients with unstable angina as assessed by positron emission tomography. Cardiovasc Drugs Ther 2:41–46

    Article  PubMed  CAS  Google Scholar 

  69. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, Phelps ME, Schelbert HR (1986) Regional myocardial metabolism in patients with acute myosion cardial infarction assessed by positron emission tomography. J Am Coll Cardiol 8:800–808

    PubMed  CAS  Google Scholar 

  70. Maddahi J, Schelbert H, Brunken R, Di Carli M (1994) Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med 35:707–715

    PubMed  CAS  Google Scholar 

  71. Camici P, Ferrannini E, Opie L (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Progr Cardiol Dis 32:217–238

    Article  CAS  Google Scholar 

  72. Knuuti J, Scelbert HR, Bax JJ (2002) The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med 29:1257–1266

    Article  Google Scholar 

  73. Wijns W, Vatner SF, Camici PG (1998) Hibernating myocardium. N Engl J Med 339:137–181

    Article  Google Scholar 

  74. Di Carli MF (2004) Advances in positron emission tomography. J Nucl Cardiol 11:719–732

    Article  PubMed  Google Scholar 

  75. Musatti L, Maggi E, Moro E, Valzelli G, Tamassia V (1998) Bioavailability and pharmacokinetics of Acipimox, a new antilipolytic and hypolipidaemic agent. J Int Med Res 9:381–386

    Google Scholar 

  76. Rechavia E (1999) Images in cardiovascular medicine. Myocardial [18F]fluorodeoxyglucose uptake after heterotopic cardiac transplantation assessed by positron emission tomography. Circulation 99:3322

    PubMed  CAS  Google Scholar 

  77. Bolli R (1996) The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91:57–63

    Article  PubMed  CAS  Google Scholar 

  78. Perrone-Filardi P, Bacharach SL, Dilsizian V, Marin-Neto JA, Maurea S, Arrighi JA, Bonow RO (1994) Clinical significance of regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 23:608–616

    PubMed  CAS  Google Scholar 

  79. Osamichi S, Kouji K, Yoshimaro I, Tadashi U, Hiroichi T, Seiyu K, Shinji O, Noboru T (2004) Myocardial glucose metabolism assessed by positron emission tomography and the histopathologic findings of microvessels in syndrome X. Circ J 68:220–226

    Article  PubMed  Google Scholar 

  80. He ZX, Shi RF, Wu YJ, Tian YQ, Liu XJ, Wang SW, Shen R, Qin XW, Gao RL, Narula J, Jain D (2003) Direct imaging of exercise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation 108:1208

    Article  PubMed  CAS  Google Scholar 

  81. Bax JJ, Valkema R, Visser FC, Poldermans D, Cornel JH, van Lingen A, Krenning EP, Rambaldi R, Roelandt JR, Visser CA, Fioretti PM (1997) Detection of myocardial viability with F-18-fluorodeoxyglucose and single photon emission computed tomography. G Ital Cardiol 27:1181–1186

    PubMed  CAS  Google Scholar 

  82. Schelbert HR (2002) 18F-deoxyglucose and the assessment of myocardial viability. Semin Nucl Med 32:60–69

    Article  PubMed  Google Scholar 

  83. Akinboboye OO, Idris O, Cannon PJ, Bergmann SR (1999) Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol 83:1271–1274, A9

    Article  PubMed  CAS  Google Scholar 

  84. Dreyfus GD, Duboc D, Blasco A, Vigoni F, Dubois C, Brodaty D, de Lentdecker P, Bachet J, Goudot B, Guilmet D (1994) Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg 57:1402–1407

    Article  PubMed  CAS  Google Scholar 

  85. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A (2002) 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 32:70–76

    Article  PubMed  Google Scholar 

  86. Vallabhajosula S, Machac J, Knesaurek K (1996) Imaging atherosclerotic macrophage density by positron emission tomography using F-18-fluorodeoxyglucose. J Nucl Med 37:38

    Google Scholar 

  87. Kato H, Miyazaki T, Nakajima M, Takita J, Kimura H, Faried A, Sohda M, Fukai Y, Masuda N, Fukuchi M, Manda R, Ojima H, Tsukada K, Kuwano H, Oriuchi N, Endo K (2005) Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas. Anticancer Res 25:4439–4444

    PubMed  Google Scholar 

  88. Yun M, Kim W, Adam L, Alnafisi N, Herman C, Alavi A (2001) F-18 FDG uptake in a patient with psoriatic arthritis: imaging correlation with patient symptoms. J Nucl Med 26:692–693

    Article  CAS  Google Scholar 

  89. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87:2464–2471

    Article  PubMed  CAS  Google Scholar 

  90. Zhuang H, Alavi A (2002) 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 32:47–59

    Article  PubMed  Google Scholar 

  91. Zhuang H, Duarte PS, Pourdehnad M, Maes A, VanAcker F, Shnier D, Garino JP, Fitzgerald RH, Alavi A (2001) The promising role of18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48

    PubMed  CAS  Google Scholar 

  92. Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z (2000) F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med 25(4):273–278

    Article  PubMed  CAS  Google Scholar 

  93. Vanquickenborne B, Maes A, Nuyts J, VanAcker F, Stuyck J, Mulier M, Verbruggen A, Mortelmans L (2003) The value of (18)FDG-PET for the detection of infected hip prosthesis. Eur J Nucl Med Mol Imaging 30:705–715

    Article  PubMed  CAS  Google Scholar 

  94. Blockmans D, Knockaert D, Maes A, De Caestecker J, Stroobants S, Bobbaers H, Mortelmans L (2001) Clinical value of [(18)F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 32:191–196

    Article  PubMed  CAS  Google Scholar 

  95. Neurath MF, Vehling D, Schunk K, Holtmann M, Brockmann H, Helisch A, Orth T, Schreckenberger M, Galle PR, Bartenstein P (2002) Noninvasive assessment of Crohn’s disease activity: a comparison of 18F fluorodeoxyglucose positron emission tomography, hydromagnetic resonance imaging and granulocyte scintigraphy with labeled antibodies. Am J Gastroenterol 97:1978–1985

    Article  PubMed  CAS  Google Scholar 

  96. Ludwig V, Frdice S, Lamar R, Martin WH, Delbeke D (2003) Unsuspected skeletal sarcoidosis mimicking metastatic disease on FDG positron emission tomography and bone scintigraphy. Clin Nucl Med 28:176–179

    Article  PubMed  Google Scholar 

  97. Poisson RP, Schoenberg OI, Fischman A, Rubin R, Simon LS, Rosenthal D, Palmer WE (1995) Use of magnetic resonance imaging and positron emission tomography in the assessment of synovial volume and glucose metabolism in patients with rheumatoid arthritis. Arthritis Rheum 38:819–825

    Google Scholar 

  98. Beckers C, Ribbens C, Andre B, Marcelis S, Kaye O, Mathy L, Kaiser MJ, Hustinx R, Foidart J, Malaise MG (2004) Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 45:956–964

    PubMed  CAS  Google Scholar 

  99. Derdelinckx I, Maes A, Bogaert J, Mortelmans L, Blockmans D (2000) Positron emission tomography scan in the diagnosis and follow-up of aortitis of the thoracic aorta. Acta Cardiol 55:193–195

    Article  PubMed  CAS  Google Scholar 

  100. Fletcher TM, Espinola D (2004) Positron emission tomography in the diagnosis of giant cell arteritis. Clin Nucl Med 29:617–619

    Article  PubMed  Google Scholar 

  101. Suzuki S, Toyota T, Suzuki H, Goto Y (1984) Partial purification from human mononuclear cells and placental plasma membranes of an insulin mediator which stimulates pyruvate dehydrogenase and suppresses glucose-6-phosphate. Arch Biochem Biophys 235:418–426

    Article  PubMed  CAS  Google Scholar 

  102. Nelson CA, Wang JQ, Leav I, Crane PD (1996) The interaction among glucose transport, hexokinase and glucose 6-phosphate with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 23:533–541

    Article  PubMed  CAS  Google Scholar 

  103. Schlyer DJ (2004) PET tracers and radiochemistry. Ann Acad Med Singapore 33:146–154

    PubMed  CAS  Google Scholar 

  104. Kong XB, Zhu QY, Vidal PM Watanabe KA, Polsky B, Armstrong D, Ostrander M, Lang SA Jr, Muchmore E, Chou TC (1992) Comparisons of anti-human immunode-ficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36:808–818

    PubMed  CAS  Google Scholar 

  105. Shiue CY, Welch MJ (2004) Update on PET radiopharma-ceuticals: life beyond fluorodeoxyglucose. Radiol Clin Am 42:1033–1053

    Article  Google Scholar 

  106. Cobben DC, Elsinga PH, Suurmeijer AJ, Vaalburg W, Maas B, Jager PL, Hoekstra HJ (2004) Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-l-thymidine. Clin Cancer Res 10:1685–1690

    Article  PubMed  CAS  Google Scholar 

  107. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, Morishita Y (1999) Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res 90:419–424

    PubMed  CAS  Google Scholar 

  108. Hara T (2001) 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med 12:1815–1817

    Google Scholar 

  109. Kumar R, Zhuang H, Alavi A (2005) PET in the management of urologic malignancies. Radiol Clin N Am 42:1141–1153

    Article  Google Scholar 

  110. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med 30:844–850

    Article  CAS  Google Scholar 

  111. Blankenberg FG, Strauss HW (2002) Nuclear medicine applications in molecular imaging. J Magn Reson Imaging 16:352–361

    Article  PubMed  Google Scholar 

  112. Alavi A (2004) PET imaging I. Radiol Clin N Am 42:xi–xiii

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mustafa, S., Alavi, A., Elgazzar, A.H. (2006). Basis of 18F-FDG Positron Emission Tomography Imaging. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-47953-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47953-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23992-5

  • Online ISBN: 978-3-540-47953-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics