Skip to main content

How to Squeeze the Vacuum, Or, What to Do When Even No Quantum Is Half a Quantum Too Many

  • Chapter
Lasers, Spectroscopy and New Ideas

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 54))

Abstract

The vacuum is conventionally defined as the absence of matter and energy. One might imagine that such a vacuum would be simple and without interest to physicists. Quantum mechanics, however, provides a detailed and complex model of the vacuum, pregnant with possibilities and well worth careful study [1], The quantum mechanical vacuum is defined as the ground state of all fields. The electromagnetic field is the field most familiar to spectroscopists, and is the model used to understand more complex forces. The electromagnetic field is conventionally modelled as an assembly of harmonic oscillator modes. It is well known that the ground state of a harmonic oscillator does not have zero energy; instead, it contains one half quantum. This vacuum energy allows an oscillator in the ground state to have a slightly fluctuating position and momentum and thus fulfil the uncertainty principle [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.G. Harris: In A Pedestrian Approach to Quantum Field Theory(Wiley-Interscience, 1972), Chapter 4.

    Google Scholar 

  2. L. I. Schiff: In Quantum Mechanics(McGraw-Hill, 1955), p.60.

    Google Scholar 

  3. B. R. Mollow: Phys. Rev. 188, 1969 (1969).

    Google Scholar 

  4. C. Cohen-Tannoudji, B. Diu, F. Laloe: In Quantum Mechanics(Wiley-Interscience/Hermann, 1977), p. 618.

    Google Scholar 

  5. A. L. Schawlow, C. H. Townes: Phys. Rev. 112, 1940 (1958).

    Article  ADS  Google Scholar 

  6. T. A. Welton: Phys. Rev. 125, 804 (1962).

    Article  MathSciNet  Google Scholar 

  7. R. Bondurant, J. H. Shapiro: Phys. Rev. D30, 2548 (1984).

    ADS  Google Scholar 

  8. C. M. Caves: Phys. Rev. D23, 1693 (1981).

    ADS  Google Scholar 

  9. D.F. Walls : In Nature (London) 306, 141 (1983).

    Google Scholar 

  10. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, D. F. Walls: Phys. Rev. Lett. 57, 691 (1986).

    Article  ADS  Google Scholar 

  11. Y. R. Shen: In The Principles of Nonlinear Optics(John-Wiley and Sons, 1984), 303 ff.

    Google Scholar 

  12. M. D. Levenson, R. M. Shelby: In Four Mode Squeezing and Applications, Optica Acta (to be published).

    Google Scholar 

  13. G. J. Milburn, M. D. Levenson, R. M. Shelby, D. F. Wall, S. H. Perlmutter, R. G. DeVoe: J. Opt. Soc. Am. B (to be published).

    Google Scholar 

  14. R. M. Shelby, M. D. Levenson, P. W. Bayer: Phys. Rev. 31, 5244 (1985).

    Article  ADS  Google Scholar 

  15. L. A. Wu, H. J. Kimble, H. Wu, J. L. Hall: Phys. Rev. Lett. 57, 2520 (1986).

    Article  ADS  Google Scholar 

  16. M. D. Levenson, R. M. Shelby, M. Reid, D. F. Walls: Phys. Rev. Lett. 57, 2473 (1986).

    Article  ADS  Google Scholar 

  17. C. M. Caves: In Quantum Optics, Experimental Gravitation and Measurement Theory, ed. by P. Meystre, M. O. Scully (Plenum Press, New York, 1983), p. 567; C. M. Caves, K. S. Thome, R. W. P. Drever, V. D. Sandberg, M. Zimmerman: Rev. Mod. Phys. 57, 341 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levenson, M.D. (1987). How to Squeeze the Vacuum, Or, What to Do When Even No Quantum Is Half a Quantum Too Many. In: Yen, W.M., Levenson, M.D. (eds) Lasers, Spectroscopy and New Ideas. Springer Series in Optical Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47872-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47872-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13608-9

  • Online ISBN: 978-3-540-47872-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics