Skip to main content

Inorganic Photorefractive Materials

  • Chapter
Holographic Data Storage

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

Light-induced refractive index changes — so-called photorefractive effects — in inorganic electro-optic crystals were discovered by Ashkin et al. in 1966 [1]. Though in the beginning these effects seemed to be very undesirable (“optical damage”), Chen et al. recognized only two years later the significance for holographic data storage [2]. In 1975, Staebler et al. reported the recording of 500 thermally fixed volume phase holograms in LiNbO3:Fe, each hologram with more than 2.5% readout efficiency [3] . The method is based on the Bragg condition allowing the superposition of many volume (“thick”) holograms at the same site under different angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966).

    Article  ADS  Google Scholar 

  2. F.S. Chen, J.T. LaMacchia, and D.B. Fraser, Appl. Phys. Lett. 13, 223 (1968).

    Article  ADS  Google Scholar 

  3. D.L. Staebler, W.J. Burke, W. Phillips, and J.J. Amodei, Appl. Phys. Lett. 26, 182 (1975).

    Article  ADS  Google Scholar 

  4. R. Orlowski and E. Krätzig, Solid State Commun. 27, 1351 (1978).

    Article  ADS  Google Scholar 

  5. G.E. Peterson, A.M. Glass, and T.J. Negran, Appl. Phys. Lett. 19, 130 (1971).

    Article  ADS  Google Scholar 

  6. J.J. Amodei, W. Phillips, and D.L. Staebler, Appl. Opt. 11, 390 (1972).

    Article  ADS  Google Scholar 

  7. P. Günter and J.—P. Huignard, eds., Topics in Applied Physics: Photorefractive Materials and Their Applications I and II, Topics Appl. Phys., Vols. 61 and 62 (Springer, Berlin, Heidelberg6 1988, 1989).

    Google Scholar 

  8. A.M. Glass, D. von der Linde, and T.J. Negran, Appl. Phys. Lett. 25, 233 (1974).

    Article  ADS  Google Scholar 

  9. K. Buse, J. Opt. Soc. Am. B 10, 1266 (1993).

    Article  ADS  Google Scholar 

  10. N.V. Kukhtarev, V.B. Markov, S.G. Odoulov, M.S. Soskin, and V.L. Vinetskii, Ferroelectrics 22, 949, 961 (1979).

    Article  Google Scholar 

  11. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, Appl. Phys. 12, 355 (1977).

    Article  ADS  Google Scholar 

  12. G.C. Valley, J. Appl. Phys. 59, 3363 (1986).

    Article  ADS  Google Scholar 

  13. F. P. Strohkendl, J.M.C. Jonathan, and R.W. Hellwarth, Opt. Lett. 11, 312 (1986).

    Article  ADS  Google Scholar 

  14. D.L. Staebler and W. Phillips, Appl. Phys. Lett. 24, 268 (1974).

    Article  ADS  Google Scholar 

  15. G.A. Brost, R.A. Motes, and J.R. Rotgé, J. Opt. Soc. Am. B 5, 1879 (1988).

    Article  ADS  Google Scholar 

  16. K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).

    Article  ADS  Google Scholar 

  17. L. Holtmann, Phys. Status Solidi A 113, K89 (1989).

    Article  ADS  Google Scholar 

  18. F. Jermann and J. Otten, J. Opt. Soc. Am. B 10, 2085 (1993).

    Article  ADS  Google Scholar 

  19. K. Buse, Appl. Phys. B 64, 273 (1997).

    Article  ADS  Google Scholar 

  20. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).

    Article  ADS  Google Scholar 

  21. R. Magnusson and T.K. Gaylord, Appl. Opt. 13, 1545 (1974).

    Article  Google Scholar 

  22. J.F. Nye, Physical Properties of Crystals. Oxford University Press (London), 1979.

    Google Scholar 

  23. D. Psaltis, D. Brady, and K. Wagner, Appl. Opt. 27, 1752 (1988).

    Article  ADS  Google Scholar 

  24. F.H. Mok, G.W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).

    Article  ADS  Google Scholar 

  25. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

    Google Scholar 

  26. Landolt Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Editor in Chief: O. Madelung, III/11, III/16, III/18, III/28. Springer Verlag (Berlin, Heidelberg, New York, London, Paris, Tokyo, HongKong).

    Google Scholar 

  27. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, Phys. Status Solidi A 135, K87 (1993).

    Article  ADS  Google Scholar 

  28. M. Zgonik, K. Nakagawa, and P. Günter, J. Opt. Soc. Am. B 12, 1416 (1995).

    Article  ADS  Google Scholar 

  29. M. Simon, F. Mersch, C. Kuper, S. Mendricks, S. Wevering, J. Imbrock, and E. Krätzig, Phys. Status Solidi A 159, 559 (1997).

    Article  ADS  Google Scholar 

  30. Ch. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, Ferroelectrics 208, 213 (1998).

    Article  Google Scholar 

  31. Ch. Kuper, R. Pankrath, and H. Hesse, Appl. Phys. A 65, 301 (1997) .

    Article  ADS  Google Scholar 

  32. S. Loheide, S. Riehemann, F. Mersch, R. Pankrath, and E. Krätzig, Phys. Status Solidi A 137, 257 (1993).

    Article  ADS  Google Scholar 

  33. S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, Ferroelectrics, 160, 213 (1994).

    Article  Google Scholar 

  34. D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, and E. Krätzig, Phys. Status Solidi A 154, K5 (1996).

    Article  ADS  Google Scholar 

  35. S. Ducharme, J. Feinberg, and R.R. Neurgaonkar, IEEE J. Quantum Electron. 23, 2116 (1987).

    Article  ADS  Google Scholar 

  36. F. Mersch, K. Buse, W. Sauf, H. Hesse, and E. Krätzig, Phys. Status Solidi A 140, 273 (1993).

    Article  ADS  Google Scholar 

  37. J.P. Wilde and L. Hesselink, J. Appl. Phys. 67, 2245 (1990).

    Article  ADS  Google Scholar 

  38. D.T.F. Marple, J. Appl. Phys. 35, 1241 (1964).

    Article  ADS  Google Scholar 

  39. E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).

    Article  ADS  Google Scholar 

  40. R. Sommerfeldt, L. Holtmann, E. Krätzig, and B.C. Grabmaier, Phys. Status Solidi A 106, 89 (1988).

    Article  ADS  Google Scholar 

  41. G.D. Bacher, M.P. Chiao, G.J. Dunning, M.B. Klein, C.C. Nelson, and B.A. Wechsler. Opt. Lett. 21, 18 (1996).

    Article  ADS  Google Scholar 

  42. D. Rytz, M.B. Klein, R.A. Mullen, R.N. Schwartz, G.C. Valley, and B.A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).

    Article  ADS  Google Scholar 

  43. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, Opt. Commun. 160, 98 (1999).

    Article  ADS  Google Scholar 

  44. L.A. Boatner, E. Krätzig, and R. Orlowski, Ferroelectrics 27, 247 (1980).

    Article  Google Scholar 

  45. S. Loheide, D. Sabbert, F. Mersch, H. Hesse, and E. Krätzig, Ferroelectrics 166, 99 (1995).

    Article  Google Scholar 

  46. R.J. Reeves, M.G. Jani, B. Jassemnejad, R.C. Powell, G.J. Mizell, and W. Fay, Phys. Rev. B 43, 71 (1991).

    Article  ADS  Google Scholar 

  47. M. Ewart, M. Ryf, C. Medrano, H. Wüest, M. Zgonik, and P. Günter, Opt. Lett. 22, 781 (1997).

    Article  ADS  Google Scholar 

  48. C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, J. Appl. Phys. 76, 5640 (1994).

    Article  ADS  Google Scholar 

  49. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, J. Opt. Soc. Am. B 13, 1461 (1996).

    Article  ADS  Google Scholar 

  50. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, Appl. Phys. Lett. 30, 631 (1977).

    Article  ADS  Google Scholar 

  51. P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).

    Article  ADS  Google Scholar 

  52. M.P. Petrov, I.A. Sokolov, S.I. Stepanov, and G.S. Trofimov, J. Appl. Phys. 68, 2216 (1990).

    Article  ADS  Google Scholar 

  53. Y. Fainman, J. Ma, and S.H. Lee, Materials Science Reports 9, 53 (1993).

    Article  Google Scholar 

  54. S. Bian and J. Frejlich, Opt. Lett. 19, 1702 (1994).

    Article  ADS  Google Scholar 

  55. D. Fluck, P. Amrhein, and P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).

    Article  ADS  Google Scholar 

  56. E. Krätzig and R.A. Rupp, SPIE 673, 483 (1986).

    ADS  Google Scholar 

  57. U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, and E. Krätzig, J. Opt. Soc. Am. B 15, 2868 (1998).

    Article  ADS  Google Scholar 

  58. K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).

    Article  ADS  Google Scholar 

  59. K. Buse, Appl. Phys. B 64, 391 (1997).

    Google Scholar 

  60. D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, Opt. Commun. 134B, 310 (1997).

    Article  ADS  Google Scholar 

  61. K. Busc, A. Gerwens, S. Wevering, and E. Krätzig, J. Opt. Soc. Am. B 15, 1674 (1998) .

    Article  ADS  Google Scholar 

  62. L.H. Acioli, M. Ulman, E.P. Ippen, J.G. Fujimoto, H. Kong, B.S. Chen, and M. Cronin-Golomb, Opt. Lett. 16, 1984 (1991).

    Article  ADS  Google Scholar 

  63. Q.N. Wang, D.D. Nolte, and M.R. Melloch, Appl. Phys. Lett. 59, 256 (1991).

    Article  ADS  Google Scholar 

  64. Q.N. Wang, R.M. Brubaker, and D.D. Nolte, J. Opt. Soc. Am. B 11, 1773 (1994).

    Article  ADS  Google Scholar 

  65. J.J. Amodei and D.L. Staebler, Appl. Phys. Lett. 18, 540 (1971).

    Article  ADS  Google Scholar 

  66. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, Solid State Commun. 40, 543 (1981).

    Article  ADS  Google Scholar 

  67. F. Micheron and G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).

    Article  ADS  Google Scholar 

  68. J. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, and D. Psaltis, Opt. Lett. 22, 1116 (1997).

    Article  ADS  Google Scholar 

  69. D. von der Linde, A.M. Glass, and K.F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).

    Article  ADS  Google Scholar 

  70. H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).

    Article  ADS  Google Scholar 

  71. K. Buse, L. Holtmann, and E. Krätzig, Opt. Commun. 85, 183 (1991).

    Article  ADS  Google Scholar 

  72. M.P. Petrov, S.I. Stepanov, and A.A. Kamshilin, Optics and Laser Technology 149 (1979).

    Google Scholar 

  73. H.C. Külich, Appl. Opt. 30, 2850 (1991).

    Article  ADS  Google Scholar 

  74. E. Chuang and D. Psaltis, Appl. Opt. 36, 8445 (1997).

    Article  ADS  Google Scholar 

  75. S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, Opt. Commun. 84, 251 (1991).

    Article  ADS  Google Scholar 

  76. S. Fries, Appl. Phys. A 55, 104 (1992).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buse, K., Krätzig, E. (2000). Inorganic Photorefractive Materials. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics