Skip to main content

Alternative Storage Techniques

  • Chapter
  • 740 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

The previous chapters of this book have detailed progress in the research and development of holographic data storage. This effort has been undertaken with the hope of eventually producing a commercially successful data storage device based on holography. The goal may never be realized. Improvements in integrated circuit, magnetic disk, optical disk, and magnetic tape storage may be sufficient for the near term. Or perhaps alternative data storage technologies will prove to be more successful in the markets that holographic storage is attempting to claim. The purpose of this section is to examine some of these alternative techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Carlin, “Electron trapping promises superdense optical storage.” Data Storage Magazine, May/June, 41, 1996.

    Google Scholar 

  2. A.D. McAulay and J. Wang, “Methods for addressing electron-trapping optical memory material.” Proc. SPIE, 2754, 210–215, 1996.

    Article  ADS  Google Scholar 

  3. K. Rubin, H. Rosen, T. Strand, W. Imaino, and W. Tang, In: Optical Data Storage Topical Meeting, Tech Dig. Series 10, 104, 1994.

    Google Scholar 

  4. H. Rosen, K. Rubin, T. Sincerbox, T. Strand, and J. Zavlislan, “Multiple data surface optical storage system.” US patent 5,202,875, 1993.

    Google Scholar 

  5. S. Faris and B. Fan, “Liquid polymers store a google of gigabytes.” Data Storage Magazine, October, 21–26, 1998.

    Google Scholar 

  6. W. Schlichting, S. Faris, B. Fan, J. Haag, Z. Lu, L. Li, T. Milster, and H. Luo, “Recording and readout of a cholesteric liquid-crystal-based multilayer disk.” In: 1996 Int Symp on Optical Memory and Optical Data Storage, Paper OWB3, 1996.

    Google Scholar 

  7. S. Faris, “Optical mass storage system and memory cell incorporated therein.” US patent 5,353,247, 1994.

    Google Scholar 

  8. T. Vo-Dinh and D. Stokes, “Serods: a new medium for high-density optical data storage.” In: Optical Data Storage ’98 Conference, Proc. SPIE, 3401, 284–290, 1998.

    Google Scholar 

  9. T. Vo-Dinh, “Surface-enhanced Raman optical data storage (SERODS): principle of a new optical data storage system.” In: Optical Data Storage ’94 Conference, Proc. SPIE, 2338, 148–155, 1994.

    Google Scholar 

  10. T. Vo-Dinh, “Surface-enhanced Raman optical data storage system.” US patent 4, 999, 810, 1991.

    Google Scholar 

  11. D. Gelbart, “An optical tape recorder using linear scanning.” Proc. SPIE, 1316, 65, 1990.

    Article  ADS  Google Scholar 

  12. R. Stahl, “Will optical tape find a niche in automated data libraries?” Data Storage Magazine, March, 49, 1996.

    Google Scholar 

  13. W.S. Oakley, “A Novel Digital Optical Tape Recorder.” Proc. SPIE, 2604, 256–262, 1995.

    Article  ADS  Google Scholar 

  14. W.E. Moerner, Persistent Spectral Hole Burning: Science and Applications. Springer, Berlin, 1988.

    Book  Google Scholar 

  15. L. Hai, T. Wang, and T.W. Mossberg, “Demonstration of 8 Gbits/in2 areal storage density using swept-carrier frequency-selective optical memory.” Opt. Lett., 20, 1658, 1995.

    Article  ADS  Google Scholar 

  16. T.W. Mossberg, “Seminar on optical dynamic RAM,” Department of Physics, University of Oregon. http://www.decryptor.uoregon.edu/mosswww/Home.html.

  17. T. Mossberg, “Spectral holographic memory promises high areal densities.” Data Storage Magazine, April, 49, 1996.

    Google Scholar 

  18. S. Hunter, F. Kiamilev, S. Esener, D. Parthenopoulos, and P. Rentzepis, “Potential of two-photon based optical memories for high performance computing.” Appl. Opt., 29(14), 2058–2066, 1990.

    Article  ADS  Google Scholar 

  19. I. Cokgor, F. McCormick, A. Dvornikov, M. Wang, K. Coblentz, S. Esener, and P. Rentzepis, “Multi-layer recording using 2-photon absorption and the numerical simulation of the recording process.” In: Optical Data Storage ’97 Conference, Proc. SPIE, 3109, 182–186, 1997.

    Google Scholar 

  20. A. Dvornikov, I. Cokgor, M. Wang, F. McCormick, K. Coblentz, S. Esener, and P. Rentzepis, “Materials and systems for two photon 3-D ROM devices.” IEEE Trans. Components, Packaging and Manufacturing Technol. A, 20(2), 203–212, 1997.

    Article  Google Scholar 

  21. Bartlett et al., “Will charged-particle systems redefine high-density storage?” Data Storage Magazine, November/December 37, 1997.

    Google Scholar 

  22. B.C. Lamartine, R.A. Stutz, and J.B. Alexander, “Long, long-term storage.” IEEE Potentials, 16(5), 17–19, 1997/98.

    Article  Google Scholar 

  23. F. Zenhausern, Y. Martin, and H.K. Wickramasinghe, Science, 269, 1083, 1995.

    Article  ADS  Google Scholar 

  24. J. Bishop, “Ultra high density analog and digital storage.” THIC Meeting in Albuquerque NM, 21–22 April 1998.

    Google Scholar 

  25. Ioptics Internet site at http://www2.ioptics.com/default2.htm.

  26. A. Sato and Y. Tsukamoto, “Nanometer-scale recording and erasing with the scanning tunneling microscope.” Nature, 363, June, 431, 1993.

    Article  ADS  Google Scholar 

  27. B.W. Chui, T.D. Stowe, Y.S. Ju, K.E. Goodson, T.W. Kenny, H.J. Mamin, B.D. Terris, R.P. Ried, and D. Rugar, “Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage.” IEEE J. Microelectromechanical Syst., 7(1), 69–78, 1998.

    Article  Google Scholar 

  28. B. Terris, H.J. Mamin, R. Ried, and D. Rugar, “AFM-based storage: route to ultra-high areal densities?” Data Storage Magazine, August, 21–26, 1998.

    Google Scholar 

  29. P. Asthana, “Jumping the technology S-curve.” IEEE Spectrum, June, 49–54, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashton, G.R., Mitchell, W.C. (2000). Alternative Storage Techniques. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics