Skip to main content

Volume Holographic Optical Correlators

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

Volume holograms have received considerable recent interest for high-capacity data storage [1–3] because of the ability to multiplex many holograms within the same volume. Volume holographic memories may also provide an attractive solution to the massive capacity and transfer rate requirements of multimedia applications [4]. The page-oriented data format of holographic memories is a natural match for the format of certain database objects such as tables of records, images, and video frames. The massive parallelism provides both high capacity and high data rates, which can alleviate the I/O bottleneck of multimedia databases [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Psaltis and F. Mok. Holographic memories. Sci. Am., 273(5), 70–76, 1995.

    Article  ADS  Google Scholar 

  2. J.F. Heanue, M.C. Bashaw, and L. Hesselink. Volume holographic storage and retrieval of digital data. Science, 265, 749–752, 1994.

    Article  ADS  Google Scholar 

  3. J.H. Hong, I. McMichael, T.Y. Chang, W. Christian, and E.G. Paek. Volume holographic memory systems: techniques and architectures. Opt. Eng., 34, 2193 2203, 1995.

    Article  ADS  Google Scholar 

  4. D.A. Adjeroh and K.C. Nwosu. Multimedia database managementrequirements and issues. IEEE Multimedia, 24 33, 1997.

    Google Scholar 

  5. A.J. Daiber, R. Snyder, J. Colvin, B. Okas, and L. Hesselink. Fully functional digital video holographic storage system. In OSA Annual Meeting, Long Beach, California, Paper ThR3, 1997.

    Google Scholar 

  6. B.J. Goertzen and P.A. Mitkas. Volume holographic storage for large relational databases. Opt. Eng., 35(7), 1847–1853, 1995.

    Article  ADS  Google Scholar 

  7. L.J. Irakliotis, G. Betzos, and P.A. Mitkas. Optical associative processors. In A. Krikelis and C.C. Weems, editors, Associative Processing and Processors, 155–179. IEEE Computer Society Press, 1997.

    Google Scholar 

  8. G.W. Burr, S. Kobras, H. Hanssen, and H. Coufal. Content-addressable data storage using volume holograms. Appl. Opt., 38(32), 6779–6784, 1999.

    Article  ADS  Google Scholar 

  9. P.B. Berra, A. Ghafoor, P.A. Mitkas, S.J. Marcinkowski, and M. Guizani. The impact of optics on data and knowledge base systems. IEEE Trans. Knowledge and Data Eng., 1, 111–132, 1989.

    Article  Google Scholar 

  10. L.J. Irakliotis, C.W. Wilmsen, and P.A. Mitkas. The optical memory/electronic computer interface as a parallel processing architecture. J. Parallel and Distributed Computing, 41, 67 77, 1997.

    Article  Google Scholar 

  11. J.W. Goodman. Introduction to Fourier Optics. McGraw—Hill, 2nd edition, 1996.

    Google Scholar 

  12. A. Van der Lugt. Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory, IT-10, 139–145, 1964.

    Article  MATH  Google Scholar 

  13. B.R. Brown and A.W. Lohmann. Complex spatial filtering with binary masks. Appl. Opt., 5(6), 967–969, 1966.

    Article  ADS  Google Scholar 

  14. J.L. Horner and P.D. Gianino. Phase-only matched filtering. Appl. Opt., 23(6), 812–816, 1984.

    Article  ADS  Google Scholar 

  15. B.V.K. Vijaya Kumar. Tutorial survey of composite filter designs for optical correlators. Appl. Opt., 31(23), 4773–4801, 1992.

    Article  ADS  Google Scholar 

  16. S. Kobras, G.W. Burr, H. Coufal, and G. Abstreiter. Opt. correlation of digital data using volume holograms: diffraction analysis. Unpublished.

    Google Scholar 

  17. S.H. Lee, editor. Optical Information Processing Fundamentals. Springer Verlag, 1981.

    Google Scholar 

  18. E.G. Paek and D. Psaltis. Holographic implementation of a neural network model. J. Opt. Soc. Am. A, 3(13), 32, 1986.

    ADS  Google Scholar 

  19. H.-Y.S. Li, Y. Qiao, and D. Psaltis. Optical network for real time face recognition. Appl. Opt., 32(26), 5026–5035, 1993.

    Article  ADS  Google Scholar 

  20. G.W. Burr, F.H. Mok, and D. Psaltis. Angle and space multiplexed holographic storage using the 90° geometry. Opt. Commun., 117, 49–55, 1995.

    Article  ADS  Google Scholar 

  21. B.J. Goertzen and P.A. Mitkas. An error correcting code for volume holographic storage of a relational database. Opt. Lett., 20, 1655–1657, 1995.

    Article  ADS  Google Scholar 

  22. G.A. Betzos, K.G. Richling, and P.A. Mitkas. Optical associative processing for multimedia database applications. In Proceedings of the 4th International Workshop on Multimedia Database Management Systems, 190–197. IEEE Computer Society Press, August 1998.

    Google Scholar 

  23. L.A. Zadeh. Fuzzy sets. Inf. Control, 8, 338–353, 1965.

    Google Scholar 

  24. G.W. Burr, J. Ashley, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson, and B. Marcus. Modulation coding for pixel—matched holographic data storage. Opt. Lett., 22(9), 639 641, 1997.

    Article  ADS  Google Scholar 

  25. S. Kobras. Associative recall of digital data in volume holographic storage systems. Master’s thesis, Technische Universität München, May 1998.

    Google Scholar 

  26. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, B. Qian Huang Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the QBIC system. IEEE Computer, 28(9), 23–32, 1995.

    Article  Google Scholar 

  27. P.A. Mitkas, G.A. Betzos, S. Mailis, and N.A. Vainos. Characterization of associative recall in a volume holographic database system for multimedia applications. In Proceedings of the SPIE, volume 3388, 198–208, April 1998.

    Article  ADS  Google Scholar 

  28. G.A. Betzos, A. Laisne, and P.A. Mitkas. Improved associative recall of binary data in volume holographic memories. Opt. Comm. 171 (13), 37–44, 1999.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitkas, P.A., Burr, G.W. (2000). Volume Holographic Optical Correlators. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics