Skip to main content

System Optimization for Holographic Data Storage Systems

  • Chapter
Holographic Data Storage

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

  • 747 Accesses

Abstract

A properly-designed holographic data storage system should preserve the data entrusted to it by a user, and return that same data at some later time. System optimization is the process of maximizing the desirable features of the system (how much data can be stored, how fast can it be returned) while maintaining the mandated fidelity (the output data is really the same as the input data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Blotekjaer. Limitations on holographic storage capacity of photochromic and photorefractive media. Appl. Opt., 18, 57–67 (1979) .

    Article  ADS  Google Scholar 

  2. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok. Cross-talk-limited storage capacity of volume holographic memory. J. Opt. Soc. Am. A, 9 (11), 1–6 (1993).

    Google Scholar 

  3. J.F. Heanue, M.C. Bashaw, and L. Hesselink. Channel codes for digital holographic data storage. J. Opt. Soc. Am. A, 12 (11), 2432 2439 (1995) .

    Article  ADS  Google Scholar 

  4. R. DeVre, J.F. Heanue, K. Gürkan, and L. Hesselink. Transfer functions based on Bragg detuning effects for image-bearing holograms recorded in photorefractive crystals. J. Opt. Soc. Am. A, 13 (7), 1331–1344 (1996).

    Article  Google Scholar 

  5. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh. Absorption effects in photorefractive volume—holographic memory systems. i. beam depletion. J. Opt. Soc. Am. B, 13 (10), 2209–2217 (1996).

    Google Scholar 

  6. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh. Absorption effects in photorefractive volume-holographic memory systems. ii. material heating. J. Opt. Soc. Am. B, 13 (10), 2218–2228,1996.

    Google Scholar 

  7. J. Heanue, K. Gurkan, and L. Hesselink. Signal detection for page-access optical memories with intersymbol interference. Appl. Opt., 35, 2431–2438 (1996).

    Article  ADS  Google Scholar 

  8. J. Hong, I. McMichael, and J. Ma. Influence of phase masks on cross-talk in holographic memory. Opt. Lett., 21, 1694–1696 (1996).

    Article  ADS  Google Scholar 

  9. M.A. Neifeld and M. McDonald. Error correction for increasing the usable capacity of photorefractive memories. Opt. Lett., 19, 1483–1485 (1994).

    Article  ADS  Google Scholar 

  10. B.H. Olson and S.C. Esener. Partial response precoding for parallel-readout optical memories. Opt. Lett., 19(9), 661–663 (1994).

    Article  ADS  Google Scholar 

  11. M.A. Neifeld, K. Chugg, and B. King. Parallel data detection in page-oriented optical memory. Opt. Lett., 21, 1481–1483 (1996).

    Article  ADS  Google Scholar 

  12. G.W. Burr, J. Ashley, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson, and B. Marcus. Modulation coding for pixel-matched holographic data storage. Opt. Lett., 22 (9), 639–641 (1997).

    Article  ADS  Google Scholar 

  13. X.A. Shen, A.-D. Nguyen, J.W. Perry, D.L. Huestis, and R. Kachru. Timedomain holographic digital memory. Science, 278, 96–100 (1997) .

    Article  Google Scholar 

  14. V. Vadde and B.V.K. Vijaya Kumar. “Channel estimation and intra-page equalization for digital volume holographic data storage,” in Optical Data Storage 1997, Optical Society of America, 250–255 (1997) .

    Google Scholar 

  15. G.W. Burr, H. Coufal, R.K. Grygier, J.A. Hoffnagle, and C.M. Jefferson. Noise reduction of page-oriented data storage by inverse filtering during recording. Opt. Lett., 23 (4), 289–291 (1998).

    Article  ADS  Google Scholar 

  16. J. Ashley and B. Marcus. Two-dimensional lowpass filtering codes for holographic storage. IEEE Trans. Commun., 46, 724–727 (1998) .

    Article  MATH  Google Scholar 

  17. M. Blaum, J. Bruck, and A. Vardy. Interleaving schemes for multidimensional cluster errors. IEEE Trans. Commun., 44 (2), 730–743 (1998).

    MathSciNet  MATH  Google Scholar 

  18. M.-P. Bernal, G.W. Burr, H. Coufal, and M. Quintanilla. Balancing inter-pixel cross-talk and thermal noise to optimize areal density in holographic storage systems. Appl. Opt., 37, 5377–5385 (1998) .

    Article  Google Scholar 

  19. B. King and M.A. Neifeld. Parallel detection algorithm for page-oriented optical memories. Appl. Opt., 37 (26), 6275–6298 (1998).

    Article  ADS  Google Scholar 

  20. W.-C. Chou and M.A. Neifeld. Interleaving and error correction in volume holographic memory systems. Appl. Opt., 37 (29), 6951–6968 (1998).

    Article  ADS  Google Scholar 

  21. G.W. Burr, G. Barking, H. Coufal, J.A. Hoffnagle, C.M. Jefferson, and M.A. Neifeld. Gray-scale data pages for digital holographic data storage. Opt. Lett., 23, 1218 4220 (1998).

    Google Scholar 

  22. F.H. Mok, G.W. Burr, and D. Psaltis. System metric for holographic memory systems. Opt. Lett., 21 (12), 896–898 (1996).

    Article  ADS  Google Scholar 

  23. G.W. Burr and D. Psaltis. Optimization of the oxidation state of LiNbO3 for large scale holographic storage. Opt. Lett., 21 (12), 893–895 (1996).

    Article  ADS  Google Scholar 

  24. M.-P. Bernal, G.W. Burr, H. Coufal, J.A. Hoffnagle, C.M. Jefferson, R.M. Shelby, and M. Quintanilla. Experimental study of the effects of a six-level phase mask on a digital holographic storage system. Appl. Opt., 37 (11), 2094–2101 (1998).

    Google Scholar 

  25. G.W. Burr, J. Ashley, B. Marcus, C.M. Jefferson, J.A. Hoffnagle, and H. Coufal. Optimizing the holographic digital data storage channel. In Proceedings of SPIE: Advanced Optical Memories and Interfaces to Computer Storage, volume 3468, 64–75 (1998) .

    Article  ADS  Google Scholar 

  26. G.W. Burr, W.-C. Chou, M.A. Neifeld, H. Coufal, J.A. Hoffnagle, and C.M. Jefferson. Experimental evaluation of user capacity in holographic data storage systems. Appl. Opt., 37, 5431–5443 (1998).

    Article  ADS  Google Scholar 

  27. M.-P. Bernal, G.W. Burr, H. Coufal, and M. Quintanilla. Noise in holographic data storage at high areal density. In CLEO 1998 Technical Digest (1998). paper CMF3.

    Google Scholar 

  28. G.W. Burr. High density holographic data storage. In OSA 1998 Annual Meeting, October 1998. Paper WAA1.

    Google Scholar 

  29. D. Psaltis, D. Brady, and K. Wagner. Adaptive optical networks using photorefractive crystals. Appl. Opt., 27 (9), 1752–1759 (1988).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burr, G.W., Artajona, M.P.B. (2000). System Optimization for Holographic Data Storage Systems. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics