Skip to main content

History and Physical Principles

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

The physical principles of holography involve the recording of the interference pattern formed between two beams of light and the subsequent illumination of that recorded pattern by one of the beams to recreate the other beam. In the specific case of holographic data storage, one beam is an information beam containing a two-dimensional pattern of 1s and Os representing digital data. Think of it as a special image. The other beam is a reference beam used to form the interference pattern that is recorded and subsequently used to reconstruct the information beam. Storage densities as high as 100 Gbits/inch2 and data rates of 1.0 Gbits/s can be realized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Lippmann, J. de Phys., 3, 97 (1894).

    Google Scholar 

  2. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-optical Information Processing, J. Tippett et al., Eds, MIT Press, 1–30 (1965).

    Google Scholar 

  3. D. Gabor, Nature, 161, 777 (1948).

    Article  ADS  Google Scholar 

  4. P.J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt., 2(4), 393–400 (1963).

    Article  ADS  Google Scholar 

  5. E.N. Leith and J. Upatnieks, J. Opt. Soc. Am., 52, 1123 (1962).

    Article  ADS  Google Scholar 

  6. E.N. Leith, A. Kozma, J. Upatnieks, J. Marks and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt., 5(8), 1303–1311 (1966).

    Article  ADS  Google Scholar 

  7. L. d’Auria, J.P. Huignard and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn., MAG-9(2), 83–94 (1973).

    Article  ADS  Google Scholar 

  8. G. Burr, F. Mok and D. Psaltis, “Storage of 10000 holograms in LiNbO3,” CLEO 1994.

    Google Scholar 

  9. K. Curtis, A. Pu and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett., 19(13), 993–995 (1994).

    Article  ADS  Google Scholar 

  10. D. Psaltis, M. Levene, A. Pu and G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett., 20(7), 782 (1995).

    Article  ADS  Google Scholar 

  11. C. Denz, G. Pauliat, G. Roosen and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun., 85, 171–176 (1991).

    Article  ADS  Google Scholar 

  12. L.K. Anderson, “Holographic Optical Memory for bulk data storage,” Bell Laboratories Record, 45, 319–326 (1968).

    Google Scholar 

  13. J. Lipp and J. Reynolds, “A high capacity holographic storage system,” in Applications of Holography, E.S. Barrakette et al., Eds. New York: Plenum Press, 377–388 (1970).

    Google Scholar 

  14. W.C. Stewart, R.S. Mezrich, L.S. Cosentino, E.M. Nagle, F.S. Wendt and R.D. Lohman, “An experimental read-write holographic memory,” RCA Rev., 34, 3–44 (1973).

    Google Scholar 

  15. W.H. Strehlow, R.L. Dennison and J.R. Packard, “Holographic data store,” J. Opt. Soc. Am., 64, 543–544 (1974).

    Google Scholar 

  16. L. d’Auria, J.P. Huignard, V.C. Slezak and E. Spitz, “Experimental holographic read-write memory using 3-D storage,” Appl. Opt., 13(4), 808–818 (1974).

    Article  ADS  Google Scholar 

  17. N. Nishida, M. Sakaguchi, and F. Saito, “Holographic coding plate: a new application of holographic memory,” Appl. Opt., 12(7), 1663–1674 (1973).

    Article  ADS  Google Scholar 

  18. A. Bardos, “Wideband holographic recorder,” Appl. Opt., 13(4), 832–840 (1974).

    Article  ADS  Google Scholar 

  19. Y. Tsunoda, K. Tatsuno, K. Kataoka and Y. Takeda, “Holographic videodisk: an alternative approach to optical videodisks,” Appl. Opt., 15(6), 1398–1403 (1976).

    Article  ADS  Google Scholar 

  20. K.K. Sutherlin, J.P. Lauer, and R.W. Olenick, “Holoscan: a commercial holographic ROM,” Appl. Opt., 13(6), 1345–1354 (1974).

    Article  ADS  Google Scholar 

  21. A. Mikaeliane, “Holographic bulk memories using lithium niobate crystals for data recording,” in Optical Information Recording, 2, E.S. Barrekette et al., Eds, New York: Plenum Press, 217–233 (1978).

    Google Scholar 

  22. K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida and M. Sakaguchi, “Holographic disk with high data transfer rate: its application to an audio response memory,” Appl. Opt., 19(6), 944–951 (1980).

    Article  ADS  Google Scholar 

  23. I. Sato, M. Kato, K. Fujito and F. Tateishi, “Holographic memory system for Kanji character generation,” Appl. Opt., 28(13), 2634–2040 (1989).

    Article  ADS  Google Scholar 

  24. M.-P. Bernal, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson, R.M. Macfarlane, R.M. Shelby, G.T. Sincerbox and G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt., 35(14), 2360–2374 (1996).

    Article  ADS  Google Scholar 

  25. J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science, 265, 749–752 (1994).

    Article  ADS  Google Scholar 

  26. G. Zhou, Y. Qiao, F. Mok, and D. Psaltis, “A holographic memory product for fingerprint identification,” Opt. Photonics News, March, 43 (1996).

    Google Scholar 

  27. I. Michael, W. Christian, D. Pletcher, T.Y. Chang, and J.H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt., 35(14 ), 2375–2379 (1996).

    Article  ADS  Google Scholar 

  28. G.W. Burr, J. Ashley, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett., 22(9), 639–641 (1997).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sincerbox, G.T. (2000). History and Physical Principles. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics