Advertisement

The CO2 Laser pp 251-266 | Cite as

Passive Mode Locking

  • W. J. Witteman
Chapter
  • 231 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 53)

Abstract

The technical requirements for active mode locking, as described in the previous two chapters, are not simply fulfilled. The external source for driving the modulator must be accurately frequency stabilized at the pulse repetition frequency. An alternative for obtaining short pulses, called passive mode locking, does not require these complications. The synchronization of the radiation modulation in the cavity with the pulse oscillation is done by the pulse itself. The mode locking is simply obtained by placing a saturable absorber in the cavity. Passive mode locking for obtaining short pulses turns out to be very practical and easy to perform. In this chapter the physics and performances of passive mode locked systems are described.

Keywords

Round Trip Saturable Absorber Passive Mode Pulse Envelope Saturation Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    V.S. Letokhov: Sov. Phys. JETP 28, 562 (1969)ADSGoogle Scholar
  2. 9.2
    J.A. Fleck: Appl. Phys. Lett. 12, 178, (1968);ADSCrossRefGoogle Scholar
  3. 9.2a
    J.A. Fleck: J. Appl. Phys. 39, 3318 (1968)ADSCrossRefGoogle Scholar
  4. 9.3
    B. Hausherr, E. Mathieu, H. Weber: IEEE J. QE-9, 445 (1973)CrossRefGoogle Scholar
  5. 9.4
    W.H. Glenn: IEEE J. QE-11, 8 (1975)CrossRefGoogle Scholar
  6. 9.5
    H.A. Haus: J. Appl. Phys. 46, 3049 (1975)ADSCrossRefGoogle Scholar
  7. 9.6
    O.R. Wood, S.E. Schwartz: Appl. Phys. Lett. 12, 263 (1968)ADSCrossRefGoogle Scholar
  8. 9.7
    J.H. McCory: Appl. Phys. Lett. 15, 353 (1969)ADSCrossRefGoogle Scholar
  9. 9.8
    A.F. Gibson, M.F. Kimmett, C.A. Rosito: Appl. Phys. Lett. 18, 546 (1971)ADSCrossRefGoogle Scholar
  10. 9.9
    A.F. Gibson, M.F. Kimmett, B. Norris: Appl. Phys. Lett. 24, 306 (1974)ADSCrossRefGoogle Scholar
  11. 9.10
    B.J. Feldman, F.J. Figueira: Appl. Phys. Lett. 25, 301 (1974)ADSCrossRefGoogle Scholar
  12. 9.11
    F. Keilmann: IEEE J. QE-12, 592 (1976)CrossRefGoogle Scholar
  13. 9.12
    C.R. Phipps. S.J. Thomas, J. Ladish, S.J. Czuchlewski, F.J. Figueira: IEEE J. QE-13, (1977)Google Scholar
  14. 9.13
    M. Sargent III: Opt. Commun. 20, 298 (1977)ADSCrossRefGoogle Scholar
  15. 9.14
    R.S. Taylor, B.K. Garside, E.A. Ballik: IEEE J. QE-14, 532 (1978)CrossRefGoogle Scholar
  16. 9.15
    A.J. Alcock, A.C. Walker: Appl. Phys. Lett. 25, 299 (1974)ADSCrossRefGoogle Scholar
  17. 9.16
    R.L. Fork, B.I. Greene, C.V. Shank: Appl. Phys. Lett. 38, 671 (1981)ADSCrossRefGoogle Scholar
  18. 9.17
    A.E. Siegman: Opt. Lett. 6, 334 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. J. Witteman
    • 1
  1. 1.Department of Applied PhysicsTwente University of TechnologyEnschedeNetherlands

Personalised recommendations