The CO2 Laser pp 138-194 | Cite as

Pulsed Systems

  • W. J. Witteman
Part of the Springer Series in Optical Sciences book series (SSOS, volume 53)


The major problem in increasing the output energy of a continuous CO2 laser system is the temperature rise with increased input energy. As discussed in Chaps. 3 and 4, the population density of the lower laser level and its depopulation rate to translational and rotational energies depend strongly on the gas temperature. The gas temperature, in turn, results from the balance between the input and the heat conduction energies. Since the heat conductivity is independent of the gas density, the heat transport by conduction is fixed for a given maximum gas temperature and hence is the limitation on the input energy. Higher output energies of cw systems can then only be obtained by also applying heat convection for cooling such as by rapidly moving the gas through the electric discharge region. For efficient operation of these systems, the discharge power input per unit mass flow rate does not exceed 600 J/g, as we have seen in Chap. 4.


Corona Discharge Inelastic Collision Elastic Collision Laser Level Vibrational Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    R. Dumanchin, J. Rocca-Serra: Compte R Acad. Sci. 269, 916 (1969)Google Scholar
  2. 6.2
    A.J. Beaulieu: Appl. Phys. Lett. 16, 504 (1970)ADSCrossRefGoogle Scholar
  3. 6.3
    J.J. Lowke, A.V. Phelps, B.W. Irwin: J. Appl. Phys. 44, 4664 (1973)ADSCrossRefGoogle Scholar
  4. 6.4
    T. Holstein: Phys. Rev. 70, 367 (1946)ADSCrossRefGoogle Scholar
  5. 6.5
    E.W. McDaniel: Collision Phenomena in Ionized Gases (Wiley, New York 1964) p. 23Google Scholar
  6. 6.6
    L.S. Frost, A. Phelps: Phys. Rev. 127, 1621 (1962);ADSCrossRefGoogle Scholar
  7. 6.6a
    L.S. Frost, A. Phelps: Phys. Rev. 136, 1538 (1964)ADSCrossRefGoogle Scholar
  8. 6.7
    R.D. Hake Jr., A.V. Phelps: Phys. Rev. 158, 70 (1967)ADSCrossRefGoogle Scholar
  9. 6.8
    A. Andrick, D. Danner, H. Ehrhardt: Phys. Lett. 29A, 346 (1969)CrossRefGoogle Scholar
  10. 6.9
    A. Stamatovic, G.J. Schulz: Phys. Rev. 188, 213 (1969)ADSCrossRefGoogle Scholar
  11. 6.10
    D. Spence, J.L. Mauer, G.J. Schulz: J. Chem. Phys. 57, 5516 (1972)ADSCrossRefGoogle Scholar
  12. 6.11
    A.G. Engelhardt, A.V. Phelps, CG. Risk: Phys. Rev. 135, A1566 (1964)ADSCrossRefGoogle Scholar
  13. 6.12
    P.T. Smith: Phys. Rev. 36, 1293 (1930)ADSCrossRefGoogle Scholar
  14. 6.13
    G.J. Schulz, R.E. Fox: Phys. Rev. 106, 1179 (1957)ADSCrossRefGoogle Scholar
  15. 6.14
    G.J. Schulz, J.W. Philbrick: Phys. Rev. Lett. 13, 477 (1964)ADSCrossRefGoogle Scholar
  16. 6.15
    J.D. Jobe, R.M. St. John: Phys. Rev. 164, 117 (1967)ADSCrossRefGoogle Scholar
  17. 6.16
    G.J. Schulz: Phys. Rev. 128, 178 (1962)ADSCrossRefGoogle Scholar
  18. 6.17
    J.H. Parker Jr., J.J. Lowke: Phys. Rev. 181, 290 (1969)ADSCrossRefGoogle Scholar
  19. 6.18
    J.N. Bardsley, M.A. Biondi: Advances in Atomic and Molecular Physics, ed. by D.R. Bates (Academic, New York 1970) Vol. 6, p. 1Google Scholar
  20. 6.19
    G.J. Ernst, A.G. Boer: Opt. Commun. 34, 235 (1980)ADSCrossRefGoogle Scholar
  21. 6.20
    W.J. Witteman: Philips Res. Repts. 21, 73 (1966)Google Scholar
  22. 6.21
    K.R. Manes, H.J. Seguin: J. Appl. Phys. 43, 5073 (1972)ADSCrossRefGoogle Scholar
  23. 6.22
    G.J. Schulz: Phys. Rev. 135, A988 (1964)ADSCrossRefGoogle Scholar
  24. 6.23
    R.L. Taylor, S. Bitterman: Rev. Mod. Phys. 41, 26 (1969)ADSCrossRefGoogle Scholar
  25. 6.24
    R. Dumanchin, J.C. Farcy, M. Michon, J. Rocca-Serra: Proc. VI Intl. Quantum Elec. Conf., Kyoto, Japan (1970)Google Scholar
  26. 6.25
    R. Dumanchin, M. Michon, J.C. Farcy, G. Boudinet, J. Rocca-Serra: IEEE J. QE8, 163 (1972)CrossRefGoogle Scholar
  27. 6.26
    A.K. Laflamme: Rev. Sci. Instrum. 41, 1578 (1970)ADSCrossRefGoogle Scholar
  28. 6.27
    H.M. Lamberton, P.R. Pearson: Electron. Lett. 7, 141 (1971)CrossRefGoogle Scholar
  29. 6.28
    W. Rogowski: Arch. Electrotech. 12, 1 (1923) or J.D. Cobine: Gaseous Conductors — Theory and Engineering Applications (McGraw-Hill, New York 1941)CrossRefGoogle Scholar
  30. 6.29
    M.C. Richardson, A.J. Alcock, K. Leopold, P. Burtyn: IEEE J. QE-9, 236 (1973)CrossRefGoogle Scholar
  31. 6.30
    T.Y. Chang: Rev. Sci., Instrum. 44, 405 (1973)ADSCrossRefGoogle Scholar
  32. 6.31
    W.R. Smythe: Static and Dynamic Electricity (McGraw-Hill, New York 1950)Google Scholar
  33. 6.32
    G.J. Ernst: Opt. Commun. 49, 275 (1984)ADSCrossRefGoogle Scholar
  34. 6.33
    G.J. Ernst: Rev. Sci. Instrum. 48, 1281 (1977).ADSCrossRefGoogle Scholar
  35. 6.34
    G.J. Ernst, A.G. Boer: Opt. Commun. 27, 105 (1978)ADSCrossRefGoogle Scholar
  36. 6.35
    G.J. Ernst, A.G. Boer: Opt. Commun. 34, 221 (1980)ADSCrossRefGoogle Scholar
  37. 6.36
    G.J. Ernst, A.G. Boer: Opt. Commun. 44, 125 (1982)ADSCrossRefGoogle Scholar
  38. 6.37
    D.J. Brink, V. Hasson: J. Appl. Phys. 49, 2250 (1978)ADSCrossRefGoogle Scholar
  39. 6.38
    V. Hasson, H.M. von Bergmann: Rev. Sci. Instrum. 50, (1979)Google Scholar
  40. 6.39
    V. Hasson, H.M. von Bergmann: J. Phys. E9, 73 (1976)ADSCrossRefGoogle Scholar
  41. 6.40
    R.E. Beverly: Light Emission from High-Current Surface-Spark Discharges, Chapter VI, Prog. Opt. 16, (North Holland, Amsterdam 1978)Google Scholar
  42. 6.41
    W.R. Kaminski: Corona preionization technique for carbon dioxide TEA lasers, Report No. 82R-980701–02, United Technologies Research Center, West Palm Beach, FL (1982)Google Scholar
  43. 6.42
    R.V. Babcock, I. Liberman, W.D. Partlow: IEEE J. QE-12, (1976)Google Scholar
  44. 6.43
    C.A. Fenstermacher, M.J. Nutter, J.P. Rink, K. Boyer: Bull. Am. Phys. Soc. 16, 42 (1971)Google Scholar
  45. 6.44
    C.A. Fenstermacher, M.J. Nutter, W.T. Leland, K. Boyer: Appl. Phys. Lett. 20, 56 (1972)ADSCrossRefGoogle Scholar
  46. 6.45
    J.D. Daugherty, E.R. Pugh, D.H. Douglas-Hamilton: Bull. Am. Phys. Soc. 17, 399 (1972)Google Scholar
  47. 6.46
    N.G. Basov, E.M. Belenov, V.A. Danilychev, O.M. Kerimov, LB. Vovsh, A.F. Suchkov: JETP Lett. 14, 285 (1971)ADSGoogle Scholar
  48. 6.47
    F.A. van Goor: private communication, University of Twente, En-schede, The NetherlandsGoogle Scholar
  49. 6.48
    S. Singer, C.J. Elliott, J. Figueira, L. Liberman, J.V. Parker, G.T. Schappert: High Power, Short-pulse CO2 Laser Systems for Inertial-Confinement Fusion, in Developments in High-Power Lasers and their Applications, ed by C. Pellegrini (North Holland, Amsterdam 1981) p. 190Google Scholar
  50. 6.49
    J.D. Daugherty: Electron Beam Ionized Lasers: in Principles of Laser Plasmas, ed. by G. Bekefi (Wiley, New York 1976)Google Scholar
  51. 6.50
    C. Cason, G.J. Dezenberg, R.J. Huff: Appl. Phys. Lett. 23, 110 (1973)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. J. Witteman
    • 1
  1. 1.Department of Applied PhysicsTwente University of TechnologyEnschedeNetherlands

Personalised recommendations