Advertisement

Continuous Discharge Lasers

  • W. J. Witteman
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 53)

Abstract

The continuous CO2 laser with its high efficiency of above 10% may be considered as the most practical laser. Its construction and operation are relatively simple. The positive column of the electrical discharge in a cylindrical tube plays a central role in the production of a high gain medium in a CO2 laser gas mixture. The production rate of the inverted medium depends on the electrical discharge parameters, the cooling properties of the medium, and the partial pressures of the gas components. The success of continuous laser operation has become possible because of the understanding of the molecular glow discharge behavior in a cylindrical tube. Since the laser process is between low lying vibrational levels, the temperature profile and the cooling of the inverted medium is also very important.

Keywords

Gaussian Beam Discharge Tube Water Jacket Positive Column Regular Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    M.J. Dmyvesteyn, F.M. Penning: Rev. Mod. Phys. 12, 87 (1940)ADSCrossRefGoogle Scholar
  2. 4.2
    H. Kogelnik, T. Li: Proc. IEEE, 54, 1312 (1966)CrossRefGoogle Scholar
  3. 4.3
    G.J. Ernst, W.J. Witteman: IEEE J. QE-9, 911 (1973)CrossRefGoogle Scholar
  4. 4.4
    H. Kogelnik: Appl. Opt. 4, 1562 (1965)ADSCrossRefGoogle Scholar
  5. 4.5
    G.J. Ernst: Opt. Commun. 25, 368 (1978)ADSCrossRefGoogle Scholar
  6. 4.6
    C.P. Christensen, C. Freed, H. Haus: IEEE J. QE-5, 276 (1969)CrossRefGoogle Scholar
  7. 4.7
    P.K. Cheo: IEEE J. QE-3, 683 (1967)CrossRefGoogle Scholar
  8. 4.8
    W.J. Witteman: IEEE J. QE-2, 375 (1966)CrossRefGoogle Scholar
  9. 4.9
    R.J. Carbone: IEEE J. QE-3, 373 (1967)CrossRefGoogle Scholar
  10. 4.10
    W.J. Witteman: Appl. Phys. Lett. 11, 337 (1967)ADSCrossRefGoogle Scholar
  11. 4.11
    R.G. Pike, D. Hubbard: J. Res. Nat. Bur. Stand. 59, 127 (1957)CrossRefGoogle Scholar
  12. 4.12
    W.J. Witteman, H.W. Werner: Phys. Lett. 26A, 454 (1968)CrossRefGoogle Scholar
  13. 4.13
    R.R. Reeves Jr., P. Harteck, B.A. Thompson, R.W. Waldron: J. Phys. Chem. 70, 1637 (1966)CrossRefGoogle Scholar
  14. 4.14
    W.J. Witteman: IEEE J. QE-5, 92 (1969)CrossRefGoogle Scholar
  15. 4.15
    W.J. Witteman: IEEE J. QE-4, 786 (1968)CrossRefGoogle Scholar
  16. 4.16
    J. Reid, K. Siemsen: Appl. Phys. Lett. 29, 250 (1976)ADSCrossRefGoogle Scholar
  17. 4.17
    J. Reid, K. Siemsen: J. Appl. Phys. 48, 2712 (1977)ADSCrossRefGoogle Scholar
  18. 4.18
    G.J. Ernst, W.J. Witteman: IEEE J. QE-7, 484 (1971)CrossRefGoogle Scholar
  19. 4.19
    W.J. Witteman, R.J. Carbone: IEEE J. QE-6, 462 (1970)CrossRefGoogle Scholar
  20. 4.20
    A. Maitland, M.H. Dunn: Laser Physics (North Holland, Amsterdam 1969) p. 187Google Scholar
  21. 4.21
    A.L.S. Smith, S. Moffat: Opt. Commun. 30, 213 (1979)ADSCrossRefGoogle Scholar
  22. 4.22
    M.C. Skolnick: IEEE J. QE-6, 139 (1970)CrossRefGoogle Scholar
  23. 4.23
    K.M. Abramski, J. Van Spijker, W.J. Witteman: Appl. Phys. B36, 149 (1985)CrossRefGoogle Scholar
  24. 4.24
    V.J. Stefanov: J. Phys. E3, 1027 (1970)ADSGoogle Scholar
  25. 4.25
    H. Jacobs, A.J. Karecman, J. Schumacher: J. Appl. Phys. 38, 3412 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. J. Witteman
    • 1
  1. 1.Department of Applied PhysicsTwente University of TechnologyEnschedeNetherlands

Personalised recommendations