Laser Processes in CO2

  • W. J. Witteman
Part of the Springer Series in Optical Sciences book series (SSOS, volume 53)


Like any other laser the basic structure of a CO2 laser consists of an amplifying medium with inverted population between two mirrors [3.1]. The mirrors form a stable or an unstable resonator between which the radiation oscillates. For the CO2 laser the inverted population is between molecular vibrational-rotational transitions of the electronic ground state level of the CO2 molecule. The populations of the upper and lower states are obtained during an electrical discharge in a gas mixture containing CO2. Other gases like N2, He, H2O, and Xe are added to CO2 because of their favorable effects on the homogeneity of the discharge or the energy transfer processes so that a higher production rate of the inverted medium is obtained. There are many vibrational-rotational transitions in the CO2 molecule for which laser action can be observed. In this chapter we shall treat the process of stimulated emission, the gain, power extraction, and the molecular energy transfer processes.


Lower Laser Level Vibrational Excitation Vibrational Temperature Average Kinetic Energy Inversion Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    K. Shimoda: Introduction to Laser Physics, 2nd. ed., Springer Ser. Opt. Sci., Vol. 44 (Springer, Berlin, Heidelberg 1986)CrossRefGoogle Scholar
  2. 3.2
    A.R. Edmonds: Angular Momentum in Quantum Mechanics (Princeton Uni. Press, Princeton NJ 1957) pp. 65–67zbMATHGoogle Scholar
  3. 3.3
    V.V. Nevdakh: Sov. J. Quantum Electron. 14, 1091 (1984)ADSCrossRefGoogle Scholar
  4. 3.4
    P.W. Anderson: Phys. Rev. 76, 647 (1949)ADSzbMATHCrossRefGoogle Scholar
  5. J.H. van Vleck, H. Margenau: Phys. Rev. 76, 1211 (1949)ADSzbMATHCrossRefGoogle Scholar
  6. 3.5
    E.T. Gerry, D.A. Leonard: Appl. Phys. Lett. 8, 227 (1966)ADSCrossRefGoogle Scholar
  7. 3.6
    U.P. Oppenheim, A.D. Devir: J. Opt. Soc. Am. 58, 585 (1968)CrossRefGoogle Scholar
  8. 3.7
    O.R. Wood: Proc. IEEE 62, 355 (1974)CrossRefGoogle Scholar
  9. 3.8
    R.L. Abrams: Appl. Phys. Lett. 25, 609 (1974)ADSCrossRefGoogle Scholar
  10. 3.9
    L.O. Hocker, M.A. Kovacs, C.K. Rhodes, G.W. Flynn, A. Javan: Phys. Rev. Lett. 17, 233 (1966)ADSCrossRefGoogle Scholar
  11. 3.10
    G.J. Ernst, W.J. Witteman: VIII Intl. Quantum Electronics Conf., San Francisco (1974) Paper S-8Google Scholar
  12. 3.11
    W.J. Witteman: Philips Res. Repts. 21, 73 (1966)Google Scholar
  13. 3.12
    K.R. Manus, H.J. Seguin: J. Appl. Phys. 43, 5073 (1972)ADSCrossRefGoogle Scholar
  14. 3.13
    F. Kaufman, J.R. Kelso: J. Chem. Phys. 28, 510 (1958)ADSCrossRefGoogle Scholar
  15. 3.14
    J.E. Morgan, H.I. Schiff: Can. J. Chem. 41, 903 (1963)CrossRefGoogle Scholar
  16. 3.15
    M.J.W. Boness, G.J. Schulz: Phys. Rev. Lett. 21, 1031 (1968)ADSCrossRefGoogle Scholar
  17. 3.16
    R.D. Hake, A.V. Phelps: Phys. Rev. 158, 70 (1967)ADSCrossRefGoogle Scholar
  18. 3.17
    G.J. Schulz: Phys. Rev. 116, 1141 (1959)ADSCrossRefGoogle Scholar
  19. 3.18
    G.J. Schulz: Phys. Rev. 125, 229 (1962)ADSCrossRefGoogle Scholar
  20. 3.19
    G.J. Schulz: Phys. Rev. 135, A988 (1964)ADSCrossRefGoogle Scholar
  21. 3.20
    P.O. Clark, M.R. Smith: Appl. Phys. Lett. 9, 367 (1966)ADSCrossRefGoogle Scholar
  22. 3.21
    D.C. Tyte, R.W. Sage: Proc. IRE, Conf. on Lasers and Opto-Elec-tronics (1969), Southampton, EnglandGoogle Scholar
  23. 3.22
    J. Polman, W.J. Witteman: IEEE J. QE-6, 154 (1970)CrossRefGoogle Scholar
  24. 3.23
    J.B. Moreno: Sandia Laboratory, Report SLA-73–1024 (1974)Google Scholar
  25. 3.24
    C.B. Moore, R.E. Wood, B.L. Hu, J.T. Yardley: J. Chem. Phys. 46, 4222 (1967)ADSCrossRefGoogle Scholar
  26. 3.25
    W.J. Witteman: J. Chem. Phys. 35, 1 (1961)ADSCrossRefGoogle Scholar
  27. 3.26
    R.L. Taylor, S. Bitterman: Rev. Mod. Phys. 41, 26 (1969)ADSCrossRefGoogle Scholar
  28. 3.27
    K.J. Siemsen, J. Reid, C. Dang: IEEE J. QE-16, 668 (1980)CrossRefGoogle Scholar
  29. 3.28
    T.L. Cottrell, J.C. McCoubrey: Molecular Energy Transfer in Gases (Butterworths, London 1961)Google Scholar
  30. 3.29
    P.O. Clark, J.Y. Wada: IEEE J. QE-4, 263 (1968)CrossRefGoogle Scholar
  31. 3.30
    P. Bletzinger, A. Garscadden: Appl. Phys. Lett. 12, 289 (1968)ADSCrossRefGoogle Scholar
  32. 3.31
    M.Z. Novgorodov, A.G. Sviridov, N.N. Sobolev: IEEE J. QE-7, 508 (1971)CrossRefGoogle Scholar
  33. 3.32
    V.N. Chirkov, A.V. Yakovleva: Opt. Spectrosc. 28, 441 (1970)Google Scholar
  34. 3.33
    W.J. Witteman: J. Chimie Physique 1, 107 (1967)Google Scholar
  35. 3.34
    G.M. Schindler: IEEE J. QE-16, 546 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. J. Witteman
    • 1
  1. 1.Department of Applied PhysicsTwente University of TechnologyEnschedeNetherlands

Personalised recommendations