The CO2 Laser pp 267-297 | Cite as

Short-Pulse Amplification

  • W. J. Witteman
Part of the Springer Series in Optical Sciences book series (SSOS, volume 53)


In order to understand the behavior of short-pulse amplification in CO2 systems, two physical processes have to be considered in detail. First it is necessary to understand the interaction of the radiation field with the inverted medium. This interaction becomes complicated when we are dealing with high-power amplification where we want to extract all the available energy from the inverted medium. The complication results from the fact that the leading edge of the propagating pulse experiences the highest gain, whereas later on the amplification becomes much less due to saturation. This affects not only the pulse shape but also the gain distribution under the pulse profile while propagating. In the case of a single transition where the population densities of the upper and lower level are only disturbed by the interaction of a one-dimensional optical pulse (plane wave) this problem can be treated analytically. Thereby it is assumed that the gain is not frequency dependent over the spectrum range of the pulse. The treatment of this problem by Frantz and Nodvik [10.1] gives a useful insight into the amplification of an intense short pulse.


Pulse Shape Vibrational Level Gaussian Pulse Nanosecond Pulse Inversion Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 10.1
    L.M. Frantz, J.S. Nodvik: J. Appl. Phys. 34, 2346 (1963)ADSCrossRefGoogle Scholar
  2. 10.2
    G.J. Schappert: Appl. Phys. Lett. 23, 319 (1973)ADSCrossRefGoogle Scholar
  3. 10.3
    R.R. Jacobs, K.J. Pettipiece, S.J. Thomas: Appl. Phys. Lett. 24, 375 (1974)ADSCrossRefGoogle Scholar
  4. 10.4
    R.K. Preston, R.T. Pack: J. Chem. Phys. 69, 2823 (1978)ADSCrossRefGoogle Scholar
  5. 10.5
    F.A. Hopf, CK. Rhodes: Phys. Rev. A8, 912 (1973)ADSCrossRefGoogle Scholar
  6. 10.6
    R.A. Rooth: Dissertation, University of Twente, Enschede, The Netherlands (1986)Google Scholar
  7. 10.7
    B.J. Feldman: Opt. Commun. 14, 13 (1975)ADSCrossRefGoogle Scholar
  8. 10.8
    M. Piltch: Opt. Commun. 7, 397 (1973)ADSCrossRefGoogle Scholar
  9. 10.9
    A.H.M. Olbertz: Opt. and Quantum Electron. 9, 536 (1977)ADSCrossRefGoogle Scholar
  10. 10.10
    R. Giles, A.A. Offenberger: Appl. Phys. Lett. 40, 944 (1982)ADSCrossRefGoogle Scholar
  11. 10.11
    R.L. Sheffield, S. Nazemi, A. Javan: Appl. Phys. Lett. 29, 588 (1976)ADSCrossRefGoogle Scholar
  12. 10.12
    R.A. Rooth, F.A. van Goor, W.J. Witteman: IEEE J. QE-19, 1610 (1983)CrossRefGoogle Scholar
  13. 10.13
    D.L. Smith, D.T. Davis: IEEE J. QE-10, 138 (1974)CrossRefGoogle Scholar
  14. 10.14
    J.F. Figueira, A.V. Nowak: Appl. Opt. 19, 420 (1980)ADSCrossRefGoogle Scholar
  15. 10.15
    S. Singer, C.J. Elliott, J. Figueira, L. Liberman, J.V. Parker, G.T. Schappert: High Power, Short-pulse CO2 Laser Systems for Inertial-Confinement Fusion, in Developments in High-Power Lasers and their Applications, ed. by C. Pellegrini (North Holland, Amsterdam 1981) p. 190Google Scholar
  16. 10.16
    R.A. Rooth, W.J. Witteman: J. Appl. Phys. 58, 1120 (1985)ADSCrossRefGoogle Scholar
  17. 10.17
    C. Dang, J. Reid, B.K. Garside: Appl. Phys. B31, 163 (1983); also R.A. Rooth, J.A. van der Pol, E.H. Haselhoff, W.J. Witteman: IEEE J. QE-23, Aug. (1987)CrossRefGoogle Scholar
  18. 10.18
    N.E. Aver’Yanov, Yu. A. Baloshin: Sov. Phys. Techn. Phys. 25, 1123 (1980)Google Scholar
  19. 10.19
    R.J. Harach: IEEE J. QE-11, 349 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. J. Witteman
    • 1
  1. 1.Department of Applied PhysicsTwente University of TechnologyEnschedeNetherlands

Personalised recommendations