Skip to main content

Part of the book series: Lecture Notes in Physics Monographs ((LNPMGR,volume 38))

  • 584 Accesses

Abstract

In this chapter we will identify the Fermi liquid as a fixed point of the renormalization group where the transformation is generated by systematically eliminating the high energy modes of the system and keeping only the modes close to the Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Brézin, “Applications of the renormalization Group to Critical Phenomena” in “Methods in Field Theory”, R. Balian and J. Zinn-Justin eds., Les Houches (1975).

    Google Scholar 

  2. R. Shankar, Physica A 177 (1991) 530. For an extense review see R. Shankar, “Renormalization Group Approach to Interacting Fermions”, Rev. Mod. Phys. 66 (1994) 129.

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Polchinski, “Effective Field Theory and the Fermi Surface”, Proceedings of the 1992 Theoretical Advanced Institute in Elementary Particle Physics, eds. J. Harvey and J. Polchinski, World Scientific, Singapore (1993).

    Google Scholar 

  4. P. Ramond, “Field Theory: A Modern Primer”, Addison-Wesley (1989).

    Google Scholar 

  5. J. Collins, “Renormalization”, Cambridge University Press (1984).

    Google Scholar 

  6. L. S. Brown, “Quantum Field Theory”, Cambridge University Press, 1992.

    Google Scholar 

  7. A. B. Migdal, “Qualitative Methods in Quantum Theory”, W. A. Benjamin, Inc. (1977).

    Google Scholar 

  8. L. M. Brown, editor, “Renormalization: from Lorentz to Landau (and Beyond)”. Springer-Verlag (1993).

    Google Scholar 

  9. A very nice account of renormalizability can be found in the article “Renormalization: a Review for Non Specialists”, of the book by S. Coleman, Aspects of Symmetry, Cambridge University Press (1988).

    Google Scholar 

  10. N. Goldenfeld, “Lectures on Phase Transitions and the Renormalization Group”, Addison-Wesley, 1992.

    Google Scholar 

  11. G. P. Lepage in “What is Renormalization?” TASI’89 Summer School, Boulder, Colorado 1989.

    Google Scholar 

  12. J. Polchinski, Nucl. Phys. B 231 (1984) 269.

    Article  ADS  Google Scholar 

  13. J. Glimm and A. Jaffe, “Quantum Physics: A Functional Integral Point of View”, Springer-Verlag 1987; R. J. Rivers, “Path Integral Methods in Quantum Field Theory”, Cambridge University Press 1987.

    Google Scholar 

  14. R. P. Feynman, and A. R. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill, 1965.

    Google Scholar 

  15. L. P. Kadanoff, “Scaling Laws for Ising Models near T c, Physics 2 (1966) 263.

    Google Scholar 

  16. K. G. Wilson, “Renormalization Group and Critical Phenomena”, Phys. Rev. B 4 (1971) 3174.

    Article  ADS  MATH  Google Scholar 

  17. L. P. Kadanoff, Rev. Mod. Phys. 49 (1977) 267.

    Article  ADS  MathSciNet  Google Scholar 

  18. K. G. Wilson, “Renormalization Group and Critical Phenomena”, Rev. Mod. Phys. 55 (1983) 583; “Problems with Physics with Many Scales of Length”, Sci. Am. 241 (1979) 158.

    Article  ADS  Google Scholar 

  19. C. Itzykson and J. M. Drouffe, “Statistical Field Theory”, vol. I, Cambrigde University Press (1989).

    Google Scholar 

  20. J. Zinn-Justin, “Quantum Field Theory and Critical Phenomena”, Clarendon, Oxford, 1989.

    Google Scholar 

  21. D. J. Amit, “Field Theory, the Renormalization Group and Critical Phenomena”, World Scientific, 1984.

    Google Scholar 

  22. S. K. Ma, “Modern Theory of Critical Phenomena”, Benjamin, 1976.

    Google Scholar 

  23. P. W. Anderson, J. Phys. C 3 (1970) 2346; see also “Basic Notions of Condensed Matter Physics”, Benjamin, 1984.

    Google Scholar 

  24. P. W. Anderson and G. Yuval, Phys. Rev. Lett. 23 (1970) 89; P. Noziéres, J. Low Temp. Phys. 17 (1974) 31.

    Article  ADS  Google Scholar 

  25. P. W. Anderson, “A Career in Theoretical Physics”, World Scientific 1994.

    Google Scholar 

  26. G. Benfatto and G. Gallavotti, Phys. Rev. B 42 (1990) 9967.

    Article  ADS  Google Scholar 

  27. R. Shankar, Physica A 177 (1991) 530.

    Article  ADS  MathSciNet  Google Scholar 

  28. P. W. Anderson, Phys. Rev. Lett. 71 (1993) 1220.

    Article  ADS  Google Scholar 

  29. A. Houghton, H.-J. Kwon, J. B. Marston, and R. Shankar, “Coulomb Interactions and the Fermi-Liquid State: Solution by Bosonization”, cond-mat/9312047 (1993).

    Google Scholar 

  30. J. Gan and E. Wong, “Non-Fermi-Liquid Behavior in Quantum Critical Systems”, Phys. Rev. Lett. 71 (1993) 4226.

    Article  ADS  Google Scholar 

  31. S. Chakravarty, R. E. Norton, and O. F. Syljuasen, “Transverse Gauge Interactions and the Vanquished Fermi Liquid”, Phys. Rev. Lett. 74 (1995) 1423.

    Article  ADS  Google Scholar 

  32. J. González, F. Guinea, and M. A. H. Vozmediano, “Non-Fermi Liquid Behavior of Electrons in the Half-Filled Honeycomb Lattice. (A Renormalization Group Approach)”, Nucl. Phys. B 424 (1994) 595.

    Article  ADS  Google Scholar 

  33. B. I. Halperin, P. Lee, and N. Read, Phys. Rev. B 47 (1993) 7312.

    Article  ADS  Google Scholar 

  34. C. Nayak and F. Wilczek, Nucl. Phys. B 417 (1994) 359; 430 (1994) 534; “Physical Properties of Metals from a Renormalization Group Standpoint”, cond-mat/9507040 (1995).

    Article  ADS  Google Scholar 

  35. A recent review of this subject can be found in F. Wilczek, “Statistical Transmutation and Phases of Two-Dimensional Quantum Matter”, Princeton preprint to appear (1995).

    Google Scholar 

  36. J. González, F. Guinea, and M. A. H. Vozmediano, preprint in preparation.

    Google Scholar 

  37. J. Labbé and J. Bok, Europhys. Lett. 3 (1987) 1225.

    Article  ADS  Google Scholar 

  38. D. M. Newns, H. R. Krishnamurty, P. C. Pattnaik, C. C. Tsuei, and C. L. Kane, Phys. Rev. Lett. 69 (1992) 1264, and references therein.

    Article  ADS  Google Scholar 

  39. H. J. Shulz, Europhys. Lett. 4 (1987) 609.

    Article  ADS  Google Scholar 

  40. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, “Phenomenology of the Normal State of Cu-O High-Temperature Superconductors”, Phys. Rev. Lett. 63 (1989) 1996.

    Article  ADS  Google Scholar 

  41. J. González, F. Guinea, and M. A. H. Vozmediano, “Renormalization group analysis of electrons near a van Hove singularity”, cond-mat/9502095 (1995).

    Google Scholar 

  42. A recent update of the situation of the van Hove singularity in relation with the high-T c superconductors with a fairly complete list of references can be found in M. L. Horbach and H. Kajuter, Int. J. Mod. Phys. B 9 (1995) 1067.

    Article  ADS  Google Scholar 

  43. See Z.-H. Shen, W. E. Spicer, D. M. King, D. S. Dessau and B. O. Wells, Science 267 (1995) 343, and references therein.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(1995). Effective Actions and the Renormalization Group. In: Quantum Electron Liquids and High-T c Superconductivity. Lecture Notes in Physics Monographs, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47678-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47678-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60503-4

  • Online ISBN: 978-3-540-47678-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics