Skip to main content

Statistical Analysis of Floating-Car Data: An Empirical Study

  • Conference paper
Traffic and Granular Flow’05

Summary

We present results of a statistical analysis of empirical floating-car data. Our investigations are based on analyzing the time series of four basic quantities namely velocity, velocity difference, spatial gap and the acceleration associated to some instrumented cars. We try to identify the moving phases of the instrumented vehicle according to the statistical properties of its velocity time series. Moreover, by exploring the two-point joint probabilities, we propose a new approach for modelling vehicular dynamics based on the floating car data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Kerner, Physics of Traffic, Springer, 2004.

    Google Scholar 

  2. A.D. May, Traffic Flow Fundamentals, Prentice Hall (1990).

    Google Scholar 

  3. C.F Daganzo, Transportation and Traffic Theory, Elsevier (1993).

    Google Scholar 

  4. D. Chowdhury, L. Santen and A. Schadschneider, Phys. Rep. 329, 199 (2000).

    Article  MathSciNet  Google Scholar 

  5. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).

    Article  Google Scholar 

  6. B.S. Kerner, Networks and Spatial Economics 1, 35 (2001).

    Article  Google Scholar 

  7. H.J. Herrmann, D. Helbing, M. Schreckenberg, and D.E. Wolf (eds.), Traffic and Granular flow (Springer, Berlin, 2000).

    MATH  Google Scholar 

  8. M. Fukui, Y. Sugiyama, M. Schreckenberg, and D.E. Wolf (eds.) Traffic and Granular flow (Springer, Tokyo, 2002).

    Google Scholar 

  9. B. S. Kerner, Phys. Rev. E 65, 046138 (2002).

    Article  Google Scholar 

  10. I. Lubashevsky, R. Mahnke, P. Wagner, and S. Kalenkov, Phys. Rev. E 66,016117 (2002).

    Article  Google Scholar 

  11. L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 60, 6480 (1999).

    Article  Google Scholar 

  12. W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 65, 056133 (2002).

    Article  Google Scholar 

  13. D. Helbing and M. Schreckenberg, Phys. Rev. E 59, R2505 (1999).

    Article  Google Scholar 

  14. M. Treiber, A. Hennecke, and D. Helbing, Phys. Rev. E 62, 1805 (2000).

    Article  Google Scholar 

  15. W. Knospe, L. Santen A. Schadschneider, and M. Schreckenberg, J. Phys. A: Math. Gen. 33, L477 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. B. S. Kerner and S.L Klenov, J. Phys. A: Math. Gen. 35, L31 (2002).

    Article  MATH  Google Scholar 

  17. B. S. Kerner, S.L Klenov, and D. E Wolf, J. Phys. A: Math. Gen. 35, 9971 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Jiang and Q.S. Wu, J. Phys. A: Math. Gen. 36, 381 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Nagel, P. Wagner, and R. Woesler, Oper. Res. 51, 681 (2003).

    Article  MathSciNet  Google Scholar 

  20. P. Wagner, arXive cond-mat/0411066.

    Google Scholar 

  21. B. Kerner and H. Rehborn, Phys. Rev. E 53, R1297 (1996); Phys. Rev. E 53, R4275 (1996).

    Article  Google Scholar 

  22. B. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997); B. Kerner, Phys. Rev. Lett. 81, 3797 (1998).

    Article  Google Scholar 

  23. M. Treiber, A. Henneke, and D. Helbing, Phys. Rev. E 62, 1805 (2000).

    Article  Google Scholar 

  24. B. Kerner, Phys. Rev. E 65, 046138 (2002).

    Article  Google Scholar 

  25. B. Kerner and S.L. Klenov, Phys. Rev. E 68, 036130 (2003).

    Article  Google Scholar 

  26. W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 70, 016115 (2004).

    Article  Google Scholar 

  27. E.P. Todosiev and L.C. Barabosa, Traffic Engineering 34, 17 (1963).

    Google Scholar 

  28. M. Brackstone, B. Sultan, and M. McDonald, Transp. Res. F 5, 329 (2002).

    Google Scholar 

  29. P. Hidas and P. Wagner, German Aerospace Centre (DLR) preprint 2004.

    Google Scholar 

  30. The data have been gathered by the Robert Bosch GmbH on the highway A 8 along the route between Stuttgart and Karlsruhe in 1995. The data are available on the web-site: http://www.clearingstelle-verkehr.de/cs/verkehrsdaten

    Google Scholar 

  31. P. Hidas, Traffic Enginering + Control 39(5), 300 (1998).

    Google Scholar 

  32. G.S. Gurusinghe, T. Nakatsuji, Y. Azuta, P. Ranjitkar, and Y. Tanaboriboon, Transportation. Res. Board conference 2003, paper no TRB2003-004137 (2003).

    Google Scholar 

  33. P. Wagner and Ihor Lubashevsky, Arxive cond-mat/0311192.

    Google Scholar 

  34. J. H. Banks, Transportation Research B 37, 539 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fouladvand, M.E., Darooneh, A.H. (2007). Statistical Analysis of Floating-Car Data: An Empirical Study. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_68

Download citation

Publish with us

Policies and ethics