Skip to main content

Dune Formation

  • Conference paper
Traffic and Granular Flow’05

Summary

Dunes are ubiquitous and exist in many forms in deserts and along coasts. They are a consequence of the wind moving sand grains by a mechanism called “saltation”. In order to describe the formation and evolution of dunes one must understand the surface flux of sand. Using the equation of motion of turbulent air in the approximation of Jackson and Hunt for gentle hills one obtains a set of equations for dune motion. These equations reproduce very well field measurements. They also allow to study in detail the collision of dunes and the stability of dune fields since their solution is many orders of magnitude faster that real time observations.

(on sabbatical leave from ICP, University of Stuttgart)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnold, R. A. (1941). The physics of blown sand and desert dunes. London: Methuen.

    Google Scholar 

  2. Houghton, J. T. (1986). The physics of atmospheres, Volume 2nd edn. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  3. Kármán, T. (1935). Some aspects of the turbulence problem. Proc. 4th Int. Congr. Appl. Mech. Cambridge, 54–91.

    Google Scholar 

  4. Prandtl, L. (1935). The mechanics of viscous fluids. In W. F. Durand (Ed.), Aerodynamic theory, Volume Vol. III, pp. 34–208. Berlin: Springer.

    Google Scholar 

  5. Sutton, O. G. (1953). Micrometeorology. New York: McGraw-Hill.

    Google Scholar 

  6. Launder, B. E. and Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London, England: Academic Press.

    MATH  Google Scholar 

  7. Fluent Inc. (1999). Fluent 5. Finite Volume Solver.

    Google Scholar 

  8. Jackson, P. S. and Hunt, J. C. R. (1975). Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101, 929.

    Article  Google Scholar 

  9. Sykes, R. I. (1980). An asymptotic theory of incompressible turbulent boundary layer flow over a small hump. J. Fluid Mech. 101, 647–670.

    Article  MATH  MathSciNet  Google Scholar 

  10. Zeman, O. and Jensen, N. O. (1988). Progress report on modeling permanent form sand dunes. Risø National Laboratory M-2738.

    Google Scholar 

  11. Carruthers, D. J. and Hunt J. C. R. (1990). Atmospheric Processes over Complex Terrain, Volume 23, Chapter Fluid Mechanics of Airflow over Hills: Turbulence, Fluxes, and Waves in the Boundary Layer. Am. Meteorological. Soc.

    Google Scholar 

  12. Weng, W. S., Hunt, J. C. R., Carruthers, D. J., Warren, A., Wiggs, G. F. S., Livingstone, I. and Castro, I. (1991). Air flow and sand transport over sand dunes. Acta Mechanica (Suppl.) 2, 1–22.

    Google Scholar 

  13. Hunt, J. C. R., Leibovich, S. and Richards, K. J. (1988). Turbulent wind flow over smooth hills. Q. J. R. Meteorol. Soc. 114, 1435–1470.

    Article  Google Scholar 

  14. Schatz, V. and Herrmann H.J. (2005). Numerical investigation of flow separation in the lee side of transverse dunes. preprint for Geomorphology.

    Google Scholar 

  15. Pye, K. and Tsoar, H. (1990). Aeolian sand and sand dunes. London: Unwin Hyman.

    Google Scholar 

  16. Chepil, W. S. (1958). The use of evenly spaced hemispheres to evaluate aerodynamic forces on a soil surface. Trans. Am. Geophys. Union 39, 397–403.

    Google Scholar 

  17. Shields, A. (1936). Applications of similarity principles and turbulence research to bed-load movement. Technical Report Publ. No. 167, California Inst. Technol. Hydrodynamics Lab. Translation of: Mitteilungen der preussischen Versuchsanstalt für Wasserbau und Schiffsbau. W. P. Ott and J. C. van Wehelen (translators).

    Google Scholar 

  18. Bagnold, R. A. (1937). The size-grading of sand by wind. Proc. R. Soc. London 163(Ser. A), 250–264.

    Article  Google Scholar 

  19. Nalpanis, P., Hunt, J. C. R. and Barrett, C. F. (1993). Saltating particles over flat beds. J. Fluid Mech. 251, 661–685.

    Article  Google Scholar 

  20. Rioual, F., Valance, A. and Bideau, C. (2000). Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 62, 2450–2459.

    Article  Google Scholar 

  21. Anderson, R. S. (1991). Wind modification and bed response during saltation of sand in air. Acta Mechanica (Suppl.) 1, 21–51.

    Google Scholar 

  22. Owen, P. R. (1964). Saltation of uniformed sand grains in air. J. Fluid. Mech. 20, 225–242.

    Article  MATH  Google Scholar 

  23. Sørensen, M. (1991). An analytic model of wind-blown sand transport. Acta Mechanica (Suppl.) 1, 67–81.

    Google Scholar 

  24. McEwan, I. K. and Willetts, B. B. (1991). Numerical model of the saltation cloud. Acta Mechanica (Suppl.) 1, 53–66.

    Google Scholar 

  25. Willetts, B. B. and Rice, M. A. (1985). Inter-saltation collisions. In O. E. Barndorff-Nielsen (Ed.), Proceedings of International Workshop on Physics of Blown Sand, Volume 8, pp. 83–100. Memoirs.

    Google Scholar 

  26. Anderson, R. S. and Hallet, B. (1986). Sediment transport by wind: toward a general model. Geol. Soc. Am. Bull. 97, 523–535.

    Article  Google Scholar 

  27. Almeida, M.P., Andrade Jr, J.S. and Herrmann, H.J. (2005). Aeolian transport layer. Phys.Rev.Lett. in print, cond-mat/0505626.

    Google Scholar 

  28. Butterfield, G. R. (1993). Sand transport response to fluctuating wind velocity. In N. J. Clifford, J. R. French, and J. Hardisty (Eds.), Turbulence: Perspectives on Flow and Sediment Transport, Chapter 13, pp. 305–335. John Wiley & Sons Ltd.

    Google Scholar 

  29. Rasmussen, K. R. and Mikkelsen, H. E. (1991). Wind tunnel observations of aeolian transport rates. Acta Mechanica Suppl 1, 135–144.

    Google Scholar 

  30. Lettau, K. and Lettau, H. (1978). Experimental and micrometeorological field studies of dune migration. In H. H. Lettau and K. Lettau (Eds.), Exploring the world’s driest climate. Center for Climatic Research, Univ. Wisconsin: Madison.

    Google Scholar 

  31. Ungar, J. E. and Haff, P. K. (1987). Steady state saltation in air. Sedimentology 34, 289–299.

    Article  Google Scholar 

  32. Sørensen, M. (1985). Estimation of some eolian saltation transport parameters from transport rate profiles. In O. E. B.-N. et al. (Ed.), Proc. Int. Wkshp. Physics of Blown Sand., Volume 1, Denmark, pp. 141–190. University of Aarhus.

    Google Scholar 

  33. Werner, B. T. (1990). A steady-state model of wind blown sand transport. J. Geol. 98, 1–17.

    Article  Google Scholar 

  34. Anderson, R. S. and Haff, P. K. (1988). Simulation of eolian saltation. Science 241, 820.

    Article  Google Scholar 

  35. Sauermann, G., Kroy K. and Herrmann H. (2001), A continuum saltation model for sand dunes. Phys. Rev. E 64, 31305.

    Article  Google Scholar 

  36. Kroy, K., Sauermann G. and Herrmann H. J. (2002), A minimal model for sand dunes. Phys. Rev. Lett. 88, 054301.

    Article  Google Scholar 

  37. Kroy K., Sauermann G. and Herrmann H. J. (2002), Minimal model for aeolian sand dunes Phys. Rev. E 66, 31302

    Article  Google Scholar 

  38. Bouchaud, J. P., Cates, M. E., Ravi Prakash J., and Edwards S. F. (1994). Hysteresis and metastability in a continuum sandpile model. J. Phys. France I 4, 1383.

    Article  Google Scholar 

  39. Sauermann, G., Poliakov, A., Rognon, P. and Herrmann, H. J. (2000), The shape of the Barchan dunes of southern Marocco, Geomorphology 36, 47–62.

    Article  Google Scholar 

  40. Schwämmle, V. and Herrmann, H. J. (2003). A model of Barchan dunes including lateral shear stress, EPJE 16, 591–594.

    Google Scholar 

  41. Sauermann G., Andrade J. S., Maia L. P. Costa U. M. S., Araújo A. D. and Herrmann H. J. (2003), Wind velocity and sand transport on a Barchan dune, Geomorphology 1325, 1–11.

    Google Scholar 

  42. Schwämmle V. and Herrmann H. J. (2003), Budding and solitary wave behaviour of dunes Nature 426, 619–620.

    Article  Google Scholar 

  43. Meunier J. and Rognon P. (2000), Une méthode écologique pour détruire les dunes mobiles, Secheresse 11, 309–316.

    Google Scholar 

  44. Ribeiro Parteli E.J., Schatz V. and Herrmann H.J. (2005), Barchan dunes on Mars and on Earth, Powders and Grains 2005,eds. R. Garcia-Rojo, H.J. Herrmann and S. McNamara (Balkema, Leiden, 2005), p.959–962.

    Google Scholar 

  45. Duran O. and Herrmann H.J. (2005) Dune mobility competing with vegetation, submitted to Nature.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrmann, H.J. (2007). Dune Formation. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_5

Download citation

Publish with us

Policies and ethics