Skip to main content

Traffic of Molecular Motors

  • Conference paper
Traffic and Granular Flow’05

Summary

Molecular motors perform active movements along cytoskeletal filaments and drive the traffic of organelles and other cargo particles in cells. In contrast to the macroscopic traffic of cars, however, the traffic of molecular motors is characterized by a finite walking distance (or run length) after which a motor unbinds from the filament along which it moves. Unbound motors perform Brownian motion in the surrounding aqueous solution until they rebind to a filament. We use variants of driven lattice gas models to describe the interplay of their active movements, the unbound diffusion, and the binding/unbinding dynamics. If the motor concentration is large, motor-motor interactions become important and lead to a variety of cooperative traffic phenomena such as traffic jams on the filaments, boundary-induced phase transitions, and spontaneous symmetry breaking in systems with two species of motors. If the filament is surrounded by a large reservoir of motors, the jam length, i.e., the extension of the traffic jams, is of the order of the walking distance. Much longer jams can be found in confined geometries such as tube-like compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Howard: Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland 2001)

    Google Scholar 

  2. M. Schliwa, editor: Molecular motors (Wiley-VCH, Weinheim 2003)

    Google Scholar 

  3. M. Schliwa, G. Woehlke: Nature 422, 759 (2003)

    Article  Google Scholar 

  4. R. Lipowsky, S. Klumpp, T. M. Nieuwenhuizen: Phys. Rev. Lett. 87, 108101 (2001)

    Article  Google Scholar 

  5. T. M. Nieuwenhuizen, S. Klumpp, R. Lipowsky: Europhys. Lett. 58, 468 (2002)

    Article  Google Scholar 

  6. S. Klumpp, R. Lipowsky: J. Stat. Phys. 113, 233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Klumpp, R. Lipowsky: Europhys. Lett. 66, 90 (2004)

    Article  Google Scholar 

  8. T. M. Nieuwenhuizen, S. Klumpp, R. Lipowsky: Phys. Rev. E 69, 061911 (2004)

    Article  Google Scholar 

  9. S. Klumpp, T. M. Nieuwenhuizen, R. Lipowsky: Biophys. J. 88, 3118 (2005)

    Article  Google Scholar 

  10. R. Lipowsky, S. Klumpp: Physica A 352, 53 (2005)

    Article  Google Scholar 

  11. M. J. I. Müller, S. Klumpp, R. Lipowsky: J. Phys.: Condens. Matter 17, S3839 (2005)

    Article  Google Scholar 

  12. A. Parmeggiani, T. Franosch, E. Frey: Phys. Rev. Lett. 90, 086601 (2003)

    Article  Google Scholar 

  13. M. R. Evans, R. Juhász, L. Santen: Phys. Rev. E 68, 026117 (2003)

    Article  Google Scholar 

  14. V. Popkov, A. Rákos, R. D. Willmann, A. B. Kolomeisky, G. M. Schütz: Phys. Rev. E 67, 066117 (2003)

    Article  Google Scholar 

  15. G. Klein, K. Kruse, G. Cuniberti, F. Jülicher: Phys. Rev. Lett. 94, 108102 (2005)

    Article  Google Scholar 

  16. C. M. Arizmendi, H. G. E. Hentschel, F. Family: Physica A 356, 6 (2005)

    Article  Google Scholar 

  17. K. Nishinari, Y. Okada, A. Schadschneider, D. Chowdhury: Phys. Rev. Lett. 95, 118101 (2005)

    Article  Google Scholar 

  18. S. Katz, J. L. Lebowitz, H. Spohn: J. Stat. Phys. 34, 497 (1984)

    Article  MathSciNet  Google Scholar 

  19. J. Krug: Phys. Rev. Lett. 67, 1882 (1991)

    Article  MathSciNet  Google Scholar 

  20. A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky, J. P. Straley: J. Phys. A: Math. Gen. 31, 6911 (1998)

    Article  MATH  Google Scholar 

  21. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, J. Török: Phys. Rev. Lett. 89, 035702 (2002)

    Article  Google Scholar 

  22. K. Nagel, M. Schreckenberg: J. Phys. I France 2, 2221 (1992)

    Article  Google Scholar 

  23. D. Chowdhury, L. Santen, A. Schadschneider: Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  Google Scholar 

  24. S. Klumpp, R. Lipowsky: Proc. Natl. Acad. Sci. USA 102, 17284 (2005)

    Article  Google Scholar 

  25. I. Derényi, T. Vicsek: Phys. Rev. Lett. 75, 374 (1995)

    Article  Google Scholar 

  26. I. Derényi, A. Ajdari: Phys. Rev. E 54, R5 (1996)

    Article  Google Scholar 

  27. Y. Aghababaie, G. I. Menon, M. Plischke: Phys. Rev. E 59, 2578 (1999)

    Article  Google Scholar 

  28. S. Konzack: Funktion des Kinesin Motorproteins KipA bei der Organisation des Mikrotubuli-Cytoskeletts und beim polaren Wachstum von Aspergillus nidulans. Ph.D. thesis, Universität Marburg (2004)

    Google Scholar 

  29. S. Konzack, P. E. Rischitor, C. Enke, R. Fischer: Mol. Biol. Cell 16, 497 (2005)

    Article  Google Scholar 

  30. C. Leduc, O. Campàs et al.: Proc. Natl. Acad. Sci. USA 101, 17096 (2004)

    Article  Google Scholar 

  31. M. R. Evans, D. P. Foster, C. Godrèche, D. Mukamel: Phys. Rev. Lett. 74, 208 (1995)

    Article  Google Scholar 

  32. A. Rákos, M. Paessens, G. M. Schütz: Phys. Rev. Lett. 91, 238302 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klumpp, S., Müller, M.J.I., Lipowsky, R. (2007). Traffic of Molecular Motors. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_20

Download citation

Publish with us

Policies and ethics