Skip to main content

Universality Classes for Force Networks in Jammed Matter

  • Conference paper

Summary

We study the geometry of forces in some simple models for granular stackings. The information contained in geometry is complementary to that in the distribution of forces in a single inter-particle contact, which is more widely studied. We present a method which focuses on fractal features of the force network and find good evidence of scale invariance of patterns of large forces. The method enables us to distinguish universality classes characterized by critical exponents. Our approach can be applied to force networks in other athermal jammed systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Liu and S. Nagel, Jamming and rheology (Taylor & Francis, 2001).

    Google Scholar 

  2. A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).

    Article  Google Scholar 

  3. V. Trappe, V. Prasad, L. Cipelletti, P. Segre, and D. A. Weitz, Nature 411, 772 (2001).

    Article  Google Scholar 

  4. H. A. Makse and J. Kurchan, Nature 415, 614 (2002).

    Article  Google Scholar 

  5. M. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Phys. Rev. Lett. 81, 1841 (1998).

    Article  Google Scholar 

  6. D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57, 3164 (1998).

    Article  Google Scholar 

  7. G. Løvoll, K. J. Maløy, and E. G. Flekkøy, Phys. Rev. E 60, 5872 (1999).

    Article  Google Scholar 

  8. D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304 (2001).

    Article  Google Scholar 

  9. J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 66, 040301 (R) (2002).

    Article  Google Scholar 

  10. J. Brujic, S. F. Edwards, D. V. Grinev, I. Hopkinson, D. Brujic, and H. A. Makse, Faraday Disc. 123, 207 (2003).

    Article  Google Scholar 

  11. F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett. 77, 274 (1996).

    Article  Google Scholar 

  12. S. Luding, Phys. Rev. E 55, 4720 (1997).

    Article  Google Scholar 

  13. F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys. Rev. Lett. 80, 61 (1998).

    Article  Google Scholar 

  14. H. A. Makse, D. L. Johnson, and L. M. Schwartz, Phys. Rev. Lett. 84, 4160 (2000).

    Article  Google Scholar 

  15. M. L. Nguyen and S. N. Coppersmith, Phys. Rev. E 62, 5248 (2000).

    Article  Google Scholar 

  16. S. J. Antony, Phys. Rev. E 63, 011302 (2000).

    Article  Google Scholar 

  17. C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001).

    Article  Google Scholar 

  18. C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).

    Article  Google Scholar 

  19. L. E. Silbert, G. S. Grest, and J. W. Landry, Phys. Rev. E 66, 061303 (2002).

    Article  Google Scholar 

  20. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, 1991).

    Google Scholar 

  21. V. Privman, Finite Size Scaling and Numerical Simulations of Statistical Physics (World Scientific, 1990).

    Google Scholar 

  22. H. M. Jaeger and S. R. Nagel, Rev. Mod. Phys. 68, 1259 (1996).

    Article  Google Scholar 

  23. J.-P. Bouchaud, in Les Houches, Session LXXVII, edited by J. Barrat (EDP Sciences, 2003).

    Google Scholar 

  24. S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and T. A. Witten, Phys. Rev. E 53, 4673 (1996).

    Article  Google Scholar 

  25. M. da Silva and J. Rajchenbach, Nature 406, 708 (2000).

    Article  Google Scholar 

  26. J. H. Snoeijer, T. J. H. Vlugt, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004a).

    Article  Google Scholar 

  27. J. H. Snoeijer, T. J. H. Vlugt, W. G. Ellenbroek, M. van Hecke, and J. M. J. van Leeuwen, Phys. Rev. E 70, 061306 (2004b).

    Article  Google Scholar 

  28. S. F. Edwards and R. Oakeshott, Physica A 157, 1080 (1989).

    Article  MathSciNet  Google Scholar 

  29. S. Ostojic and D. Panja, in Powders and Grains 2005 (Barkema, 2005a).

    Google Scholar 

  30. S. Ostojic and D. Panja, J. Stat. Mech. p. P01011 (2005b), S. Ostojic and D. Panja, cond-mat/0403321 (2005b).

    Google Scholar 

  31. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999).

    Google Scholar 

  32. J. H. Snoeijer, M. van Hecke, E. Somfai, and W. van Saarloos, Phys. Rev. E 70, 011301 (2004c).

    Article  Google Scholar 

  33. A. Harris and T. Lubensky, Phys. Rev. Lett. 33, 1540 (1974).

    Article  Google Scholar 

  34. S. Ostojic, E. Somfai and B. Nienhuis, Nature, in press.

    Google Scholar 

  35. M. Nicodemi, Phys. Rev. Lett. 80, 1340 (1998).

    Article  Google Scholar 

  36. M. L. Nguyen and S. N. Coppersmith, Phys. Rev. E 59, 5870 (1999).

    Article  Google Scholar 

  37. O. Narayan, Phys. Rev. E 63, 010301 (R) (2000).

    Article  Google Scholar 

  38. J.-P. Bouchaud, P. Claudin, D. Levine, and M. Otto, Eur. Phys. J. E 4, 451 (2001).

    Article  Google Scholar 

  39. C. Goldenberg and I. Goldhirsch, Granular Matter 6, 87 (2004).

    Article  MATH  Google Scholar 

  40. M. A. de Menezes and A.-L. Barabasi, Phys. Rev. Lett. 92, 028701 (2004).

    Article  Google Scholar 

  41. E. Almaas, B. Kovacs, T. Vicsek, Z. N. Oltvai, and A.-L. Barabasi, Nature 427, 839(2004).

    Article  Google Scholar 

  42. R. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ostojic, S., Nienhuis, B. (2007). Universality Classes for Force Networks in Jammed Matter. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_2

Download citation

Publish with us

Policies and ethics