Skip to main content

Cooperative Behaviour of Semiflexible Polymers and Filaments

  • Conference paper
Traffic and Granular Flow’05

Summary

Semiflexible polymers and filaments play an important role in biological and chemical physics. The cooperative behaviour of interacting filaments and the internal bending modes of a single filament give rise to various equilibrium phase transitions, such as bundling and adsorption, which are reviewed in this article. In motility assays, filaments are adsorbed and driven by motor proteins, which are anchored to a planar two-dimensional substrate. We present a simulation model for the active filament dynamics in this non-equilibrium system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys. Rev. E 48, R1642 (1993); J. Käs, H. Strey, and E. Sackmann, Nature 368, 226 (1994).

    Article  Google Scholar 

  2. F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol. 120, 923 (1993).

    Article  Google Scholar 

  3. J. Kierfeld, T. Kühne and R. Lipowsky, Phys. Rev. Lett. 95, 038102 (2005).

    Article  Google Scholar 

  4. J.R. Bartles, Curr. Opin. Cell Biol. 12, 72 (2000).

    Article  Google Scholar 

  5. K.R. Ayscough, Curr. Opin. Cell Biol. 10, 102 (1998); S.J. Winder, ibid. 15, 14 (2003).

    Article  Google Scholar 

  6. M. Tempel, G. Isenberg, and E. Sackmann, Phys. Rev. E 54, 1802 (1996).

    Article  Google Scholar 

  7. O. Pelletier, E. Pokidyshevam L.S. Hirst, N. Bouxsein, Y. Li, and C.R. Safinya, Phys. Rev. Lett. 91, 148102 (2003).

    Article  Google Scholar 

  8. M.L. Gardel, J.H. Shin, F.C. MacKintosh, L. Mahadevan, P. Matsudaira, and D.A. Weitz, Science 304, 1301 (2004).

    Article  Google Scholar 

  9. J. Kierfeld and R. Lipowsky, Europhys. Lett. 62, 285 (2003); J. Phys. A: Math. Gen. 38, L155 (2005).

    Article  Google Scholar 

  10. S.S. Sheiko and M. Möller, Chem. Rev. 101, 4099 (2001).

    Article  Google Scholar 

  11. N. Severin, J. Barner, A. A. Kalachev and J.P. Rabe, Nano Lett. 4, (2004) 577.

    Article  Google Scholar 

  12. P. Kraikivski, R. Lipowsky, and J. Kierfeld, Europhys. Lett. 66, 763 (2004); Eur. Phys. J. E 16, 319 (2005); Europhys. Lett. 71, 138 (2005).

    Article  Google Scholar 

  13. J. Scholey, Motility assays for motor proteins, Meth. Cell Biology 39, (Academic Press, New York, 1993).

    Google Scholar 

  14. T. Duke, T.E. Holy, and S. Leibler, Phys. Rev. Lett. 74, 330 (1994).

    Article  Google Scholar 

  15. M.R. Faretta and B. Basetti, Europhys. Lett. 41, 689 (1998).

    Article  Google Scholar 

  16. F. Gibbons, J.-F. Chauwin, M. Despósito, and J.V. José, Biophys. J. 80, 2515 (2001).

    Article  Google Scholar 

  17. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001).

    Google Scholar 

  18. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  19. M. Warner and P.J. Flory, J. Chem. Phys. 73, 6327 (1980); A.R. Khokhlov and A.N. Semenov, J. Stat. Phys. 38, 161 (1985).

    Article  Google Scholar 

  20. C. M. Coppin, D. W. Pierce, L. Hsu, R. D. Vale, Proc. Natl. Acad. Sci. USA 94, (1997) 8539.

    Article  Google Scholar 

  21. S. M. Block, C. L. Asbury, J. W. Shaevitz, M. J. Lang, Proc. Natl. Acad. Sci. USA 100, (2003) 2351.

    Article  Google Scholar 

  22. P. Kraikivski, R. Lipowsky, and J. Kierfeld, Phys. Rev. Lett. 96, 258103 (2006).

    Article  Google Scholar 

  23. The model can be extended to deformable filaments by modeling each filament as a set of N s segments connected by elastic springs and hinges, see P. Kraikivski, Ph.D. thesis, Universität Potsdam, 2005.

    Google Scholar 

  24. J. Kierfeld, O. Niamploy, V. Sa-yakanit, and R. Lipowsky, Eur. Phys. J. E 14, 17 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kierfeld, J., Kraikivski, P., Kühne, T., Lipowsky, R. (2007). Cooperative Behaviour of Semiflexible Polymers and Filaments. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_19

Download citation

Publish with us

Policies and ethics