Skip to main content

Traffic Phenomena in Biology: From Molecular Motors to Organisms

  • Conference paper
Book cover Traffic and Granular Flow’05

Summary

Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, some-times encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitative analysis of models of these traffic-like collective phenomena as these systems are intrinsically far from equilibrium. In this review we critically examine the current status of our understanding, expose the limitations of the existing methods, mention open challenging questions and speculate on the possible future directions of research in this interdisciplinary area where physics meets not only chemistry and biology but also (nano-)technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Chowdhury, A. Schadschneider and K. Nishinari, Phys. of Life Rev. 2, 318 (2005).

    Article  Google Scholar 

  2. S. Wolfram, Theory and Applications of Cellular Automata (World Sci., 1986); A New Kind of Science (Wolfram Research Inc., 2002)

    Google Scholar 

  3. B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, 1998).

    Google Scholar 

  4. J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, 1999).

    Google Scholar 

  5. D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).

    Article  MathSciNet  Google Scholar 

  6. G.M. Schütz: Exactly Solvable Models for Many-Body Systems, in C. Domb and J.L. Lebowitz (eds.), Phase Transitions and Critical Phenomena, Vol. 19 (Academic Press, 2001).

    Google Scholar 

  7. M.R. Evans and R.A. Blythe, Physica A313, 110 (2002).

    Google Scholar 

  8. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, (Sinauer Associates, 2001).

    Google Scholar 

  9. M. Schliwa (ed.), Molecular Motors, (Wiley-VCH, 2002).

    Google Scholar 

  10. G. Oster and H. Wang, in ref. [9].

    Google Scholar 

  11. M.E. Fisher and A.B. Kolomeisky, Proc. Natl. Acad. Sci. 98, 7748 (2001).

    Article  Google Scholar 

  12. R.D. Astumian, Appl. Phys. A 75, 193 (2002).

    Article  Google Scholar 

  13. M. Aridor and L.A. Hannan, Traffic 1, 836 (2000); 3, 781 (2002).

    Article  Google Scholar 

  14. N. Hirokawa and R. Takemura, Trends in Biochem. Sci. 28, 558 (2003)

    Article  Google Scholar 

  15. E. Mandelkow and E.M. Mandelkow, Trends in Cell Biol. 12, 585 (2002).

    Article  Google Scholar 

  16. L.S. Goldstein, Proc. Natl. Acad. Sci. 98, 6999 (2001); Neuron 40, 415–425 (2003). 28, 558 (2003); Curr. Op. Neurobiol. 14, 564–573 (2004).

    Article  Google Scholar 

  17. I. Derenyi and T. Vicsek, Phys. Rev. Lett. 75, 374 (1995).

    Article  Google Scholar 

  18. I. Derenyi and A. Ajdari, Phys. Rev. E 54, R5 (1996).

    Article  Google Scholar 

  19. Y. Aghababaie, G.I. Menon and M. Plischke, Phys. Rev. E 59, 2578 (1999).

    Article  Google Scholar 

  20. R. Lipowksy, S. Klumpp, and Th. M. Nieuwenhuizen, Phys. Rev. Lett. 87, 108101 (2001).

    Article  Google Scholar 

  21. R. Lipowksy and S. Klumpp, Physica A 352, 53 (2005).

    Article  Google Scholar 

  22. M.J.I. Müller, S, Klumpp and R. Lipowsky, J. Phys. Cond. Matt. 17, S3839 (2005) and references therein.

    Article  Google Scholar 

  23. S. Klumpp and R. Lipowsky, this proceedings.

    Google Scholar 

  24. A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90, 086601 (2003); Phys. Rev. E 70, 046101 (2004).

    Article  Google Scholar 

  25. E. Frey, A. Parmeggiani and T. Franosch, Genome Informatics 15(1), 46 (2004) and references therein.

    Google Scholar 

  26. M.R. Evans, R. Juhasz, and L. Santen, Phys. Rev. E 68, 026117 (2003).

    Article  Google Scholar 

  27. R. Juhasz and L. Santen, J. Phys. A 37, 3933 (2004).

    Article  MathSciNet  Google Scholar 

  28. V. Popkov, A. Rakos, R.D. Williams, A.B. Kolomeisky, and G.M. Schütz, Phys. Rev. E 67, 066117 (2003).

    Article  Google Scholar 

  29. F. Schweitzer: Brownian Agents and Active Particles, Springer Series in Synergetics (Springer 2003).

    Google Scholar 

  30. B. Schmittmann and R.P.K. Zia, in C. Domb and J.L. Lebowitz (eds.), Phase Transitions and Critical Phenomena, Vol. 17 (Academic Press, 1995).

    Google Scholar 

  31. G.A. Klein, K. Kruse, G. Cuniberti and F. Jülicher, Phys Rev. Lett. 94, 108102 (2005).

    Article  Google Scholar 

  32. K. Nishinari, Y. Okada, A. Schadschneider and D. Chowdhury, Phys. Rev. Lett. 95, 118101 (2005).

    Article  Google Scholar 

  33. Y. Okada and N. Hirokawa, Science 283, 1152 (1999).

    Article  Google Scholar 

  34. Y. Okada and N. Hirokawa, Proc. Natl. Acad.Sci. USA 97, 640 (2000).

    Article  Google Scholar 

  35. Y. Okada, H. Higuchi, and N. Hirokawa, Nature, 424, 574 (2003).

    Article  Google Scholar 

  36. R. Nitta, M. Kikkawa, Y. Okada, and N. Hirokawa, Science 305, 678 (2003).

    Article  Google Scholar 

  37. Y. Okada, K. Nishinari, D. Chowdhury, A. Schadschneider, and N. Hirokawa (to be published).

    Google Scholar 

  38. F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).

    Article  Google Scholar 

  39. P. Reimann, Phys. Rep. 361, 57–265 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  40. K. Nishinari, Y. Kanayama, Y. Okada, P. Greulich, A. Schadschneider and D. Chowdhury, in this proceedings.

    Google Scholar 

  41. C. MacDonald, J. Gibbs, and A. Pipkin, Biopolymers 6, 1 (1968); C. MacDonald and J. Gibbs, Biopolymers 7, 707 (1969)

    Article  Google Scholar 

  42. L.B. Shaw, R.K.P. Zia and K.H. Lee, Phys. Rev. E 68, 021910 (2003).

    Article  Google Scholar 

  43. L.B. Shaw, J. P. Sethna and K.H. Lee, Phys. Rev. E 70, 021901 (2004).

    Article  Google Scholar 

  44. L.B. Shaw, A.B. Kolomeisky and K.H. Lee, J. Phys. A 37, 2105 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  45. G. Lakatos and T. Chou, J. Phys. A 36, 2027 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  46. T. Chou and G. Lakatos, Phys. Rev. Lett. 93, 198101 (2004).

    Article  Google Scholar 

  47. H. Nagase and J. F. Woessner, J. Biol. Chem. 274, 21491 (1999).

    Article  Google Scholar 

  48. M. Whittaker and A. Ayscough, Celltransmisions 17, 3 (2001).

    Google Scholar 

  49. S. Saffarian, I. E. Collier, B.L. Marmer, E.L. Elson and G. Goldberg, Science 306, 108 (2004).

    Article  Google Scholar 

  50. J. Mai, I.M. Sokolov and A. Blumen, Phys. Rev. E 64, 011102 (2001).

    Article  Google Scholar 

  51. T. Antal and P.L. Krapivsky, cond-mat/0504652.

    Google Scholar 

  52. Y. Hiratsuka, M. Miyata and T. Q. P. Uyeda, Biochem. Biophys. Res. Commun. 331, 318 (2005).

    Article  Google Scholar 

  53. D. B. Weibel, P. Garstecki, D. Ryan, W. R. DiLuzio, M. Mayer, J. E. Seto and G. M. Whitesides, Proc. Nat. Acad. Sci. USA, 102, 11963 (2005).

    Article  Google Scholar 

  54. E. Bonabeau, G. Theraulaz, J.L. Deneubourg, S. Aron and S. Camazine, Trends in Ecol. Evol. 12, 188 (1997)

    Article  Google Scholar 

  55. C. Anderson, G. Theraulaz and J.L. Deneubourg, Insect. Sociaux 49, 99 (2002)

    Article  Google Scholar 

  56. Z. Huang and J.H. Fewell, Trends in Ecol. Evol. 17, 403 (2002).

    Article  Google Scholar 

  57. E. Bonabeau, Ecosystems 1, 437 (1998).

    Article  Google Scholar 

  58. G. Theraulaz, J. Gautrais, S. Camazine and J.L. Deneubourg, Phil. Trans. Roy. Soc. Lond. A 361, 1263 (2003).

    Article  MathSciNet  Google Scholar 

  59. J. Gautrais, G. Theraulaz, J.L. Deneubourg and C. Anderson, J. Theor. Biol. 215, 363 (2002).

    Article  Google Scholar 

  60. L. Edelstein-Keshet, J. Math. Biol. 32, 303 (1994).

    Article  MATH  Google Scholar 

  61. G. Theraulaz, E. Bonabeau, S.C. Nicolis, R.V. Sole, V. Fourcassie, S. Blanco, R. Fournier, J.L. Joly, P. Fernandez, A. Grimal, P. Dalle and J.L. Deneubourg, Proc. Natl.Acad. Sci. 99, 9645 (2002).

    Article  MATH  Google Scholar 

  62. M. Dorigo, G. di Caro and L.M. Gambardella, Artificial Life 5(3), 137 (1999); Special issue of Future Generation Computer Systems dedicated to antalgorithms (2000).

    Article  Google Scholar 

  63. E. Bonabeau, M. Dorigo and G. Theraulaz, Nature 400, 39 (2000).

    Article  Google Scholar 

  64. E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Intelligence (Oxford University Press, 1999).

    Google Scholar 

  65. M.J.B. Krieger, J.B. Billeter and L. Keller, Nature 406, 992 (2000).

    Article  Google Scholar 

  66. F.L.W. Ratnieks and C. Anderson, Insectes Sociaux 46, 95 (1999).

    Article  Google Scholar 

  67. C. Anderson and F.L.W. Ratnieks, Am. Nat. 154, 521 (1999).

    Article  Google Scholar 

  68. F.L.W. Ratnieks and C. Anderson, Am. Nat. 154, 536 (1999).

    Article  Google Scholar 

  69. C. Anderson and F.L.W. Ratnieks, Insectes Sociaux 47, 198 (2000).

    Article  Google Scholar 

  70. C. Anderson and D.W. McShea, Biol. Rev. 76, 211 (2001).

    Article  Google Scholar 

  71. C. Anderson and F.L.W. Ratnieks, in: Complexity and complex systems in industry, eds. I.P. McCarthy and T. Rakotobe-Joel, (University of Warwick, U.K.), 92 (2000).

    Google Scholar 

  72. E. Bonabeau and C. Meyer, Harvard Business Review (May), 107 (2001).

    Google Scholar 

  73. E.O. Wilson, The Insect Societies (Belknap, Cambridge, USA, 1971); B. Hölldobler and E.O. Wilson, The Ants (Belknap, Cambridge, USA, 1990)

    Google Scholar 

  74. S. Camazine, J.L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau: Self-organization in Biological Systems (Princeton University Press, 2001).

    Google Scholar 

  75. A.S. Mikhailov and V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action (Springer, 2002).

    Google Scholar 

  76. E.M. Rauch, M. M. Millonas and D.R. Chialvo, Phys. Lett. A 207, 185 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  77. J. Watmough and L. Edelstein-Keshet, J. Theor. Biol. 176, 357 (1995).

    Article  Google Scholar 

  78. I.D. Couzin and N.R. Franks, Proc. Roy Soc. London B 270, 139 (2003).

    Article  Google Scholar 

  79. D. Chowdhury, V. Guttal, K. Nishinari, A. Schadschneider, J. Phys. A:Math. Gen. 35, L573 (2002)

    Article  MATH  Google Scholar 

  80. K. Nishinari, D. Chowdhury, A. Schadschneider, Phys. Rev. E 67, 036120 (2003)

    Article  Google Scholar 

  81. A. Kunwar, D. Chowdhury, A. Schadschneider and K. Nishinari, accepted in J. Stat. Mech.

    Google Scholar 

  82. A. John, A. Schadschneider, D. Chowdhury and K. Nishinari, J. Theor. Biol. 231, 279 (2004).

    Article  MathSciNet  Google Scholar 

  83. D. Helbing, F. Schweitzer, J. Keltsch, P. Molnar: Phys. Rev. E56, 2527 (1997)

    Google Scholar 

  84. B. Derrida, Phys. Rep. 301, 65 (1998)

    Article  MathSciNet  Google Scholar 

  85. B. Derrida and M.R. Evans, in: Nonequilibrium Statistical Mechanics in One Dimension, ed. V. Privman (Cambridge University Press, 1997)

    Google Scholar 

  86. O.J. O’Loan, M.R. Evans, M.E. Cates, Europhys. Lett. 42, 137 (1998); Phys. Rev. E58, 1404 (1998).

    Article  Google Scholar 

  87. D. Chowdhury, R.C. Desai, Eur. Phys. J. B15, 375 (2000).

    Google Scholar 

  88. A. Kunwar, A. John, K. Nishinari, A. Schadschneider and D. Chowdhury, J. Phys. Soc. Jap. 73, 2979 (2004).

    Article  MATH  Google Scholar 

  89. A. John, A. Kunwar, A. Namazi, A. Schadschneider, D. Chowdhury, and K. Nishinari, in this proceedings.

    Google Scholar 

  90. M. Burd, D. Archer, N. Aranwela and D.J. Stradling, Am. Nat. 159, 283 (2002).

    Article  Google Scholar 

  91. M. Burd et al. (2005) unpublished.

    Google Scholar 

  92. A. John et al. (2005) unpublished

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chowdhury, D., Schadschneider, A., Nishinari, K. (2007). Traffic Phenomena in Biology: From Molecular Motors to Organisms. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_18

Download citation

Publish with us

Policies and ethics