Advertisement

Feature Recognition and Classification Using Spectral Methods

  • K. Revathy
Part of the Studies in Computational Intelligence book series (SCI, volume 46)

Keywords

Fractal Dimension Spectral Method Image Fusion Image Compression Fractal Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abans, F., & Abans, O. (1998). Looking for fine structures in galaxies. Astron. As-trophys. Supp. Ser. 128, 289-297CrossRefGoogle Scholar
  2. Adams, M.D., & Ward, R. (2001). Wavelet transforms in the JPEG-2000 stan-dard. mdadams@ieee.orgGoogle Scholar
  3. Andreon, S., & Davoust, E. (1997). Structural classification of galaxies in clusters. Astron. Astrophys., 319, 747-756Google Scholar
  4. Antoine, J.P., Demanet, L., Hochedez, J-F., Jaques, L., Terrier, R., & Verwichte, E. (2002). Application of 2D wavelet transform to astrophysical images. Phys. Mag., 24, 93-116Google Scholar
  5. Antonini, A., Barland, M., Mathier, P., & Daebechies, I. (1992). Image coding us-ing wavelet transform. IEEE Trans. Image Process., 1, 205-220CrossRefGoogle Scholar
  6. Baldoni, M., Baroglio, C., Cavagnino, D., & Saitta, L. (1998). Towards automatic fractal feature extraction for image recognition. In H. Liu, & H. Motada (Eds.), Feature extraction, construction and selection, Dordritcht: KluwerGoogle Scholar
  7. Barbara, D., & Chen, P. (2000). Using the fractal dimension to cluster data sets. Proceedings of the sixth international conference on knowledge discovery and data mining (KDD-2000), 260-264Google Scholar
  8. van den Berg, J.C. (1999). Wavelets in physics. Cambridge: Cambridge University PressCrossRefGoogle Scholar
  9. Bijaoui, A., & Giudicelli, M. (1991). Optimal image addition using wavelet trans-form. Exp. Astron., 1, 347-363CrossRefGoogle Scholar
  10. Bijaoui, A., & Ruea, F. (1995). A multi scale vision model adapted to astronomi-cal images. Signal Process., 46, 345-362CrossRefzbMATHGoogle Scholar
  11. Bijaoui, A., Slezak, E., Rue, F., & Lega, E. (1996). Wavelet and the study of dis-tant universe. Proc. IEEE, 84, 670-679CrossRefGoogle Scholar
  12. Bijaoui, A. (1997). Vision modeling in astronomy: Recent results. CCMA Confer-ence: ESF NetworkGoogle Scholar
  13. Blackledge, J.M., & Turner, M.J. (2000). Image processing II, mathematical methods, algorithms and applications. Chichester, UK: Ellis HorwoodGoogle Scholar
  14. Blackledge, J.M. (1989). Quantitative coherent imaging: Theory methods and some applications. London: AcademicGoogle Scholar
  15. Blanco, S., Bocchialine, K., Costa, A., Domenech, G., Rovira, M., & Vial, J.C. (1999). Multi-resolution wavelet analysis of SUMER-SOHO observations in a solar prominence. Solar Phys., 186, 281-290CrossRefGoogle Scholar
  16. Bocchialini, K., & Baudin, F. (1995). Wavelet analysis of chromospheric solar os-cillations. Astron. Astrophys., 299, 893-896Google Scholar
  17. Burda, P., & Feitzinger, J.V (1992). Galaxy classification using pattern recogni-tion methods. Astron. Astrophys., 261, 697-705Google Scholar
  18. Calderbank, R.C., Daubechies, I., Sweldens, W., & Yeo, B.L. (1998). Wavelet transform that map integers to integers. Appl. Comput. Harmon. Anal., 5, 332-369CrossRefMathSciNetzbMATHGoogle Scholar
  19. Campbell, N.W., Thomas, B.T., & Troscianko, T. (1997). Automatic segmentation and classification of outdoor images using neural networks. Int. J. Neur. Syst., 8, 137-144CrossRefGoogle Scholar
  20. Chan, Y.T. (1995). Wavelet basics. Dordrecht: KluwerGoogle Scholar
  21. Chapman, G.A., Cookson, A.M., Dobias, J.J., & Walton, S.R. (2001). Improved determination of the area ratio of faculae to sunspots. Astrophys. J., 555, 462-465CrossRefGoogle Scholar
  22. Chaudhuri, B.B., Sarkar N. (1995). Texture segmentation using fractal dimension. IEEE Trans. PAMI, 17, 72-76Google Scholar
  23. Cheriet, M., Said, J.N., & Suen, C.Y. (1998). A recursive thresholding technique for image segmentation. IEEE Trans. Image Process., 7, 918-920CrossRefGoogle Scholar
  24. Christopoulou, E.B., Skodras, A., Georgakilas, A.A., & Koutchmy, S. (2003). Wavelet analysis of umbral oscillations. Astrophys. J., 591, 416-431CrossRefGoogle Scholar
  25. Chui, C.K. (1992). Wavelets: A tutorial in theory and applications. San Diego, CA: AcademiczbMATHGoogle Scholar
  26. Cochran, W.O., Hart, J.C., & Flynn, P.J. (1996). Fractak volume compression. IEEE Trans. Vis. Comput. Graph., 2, 3113-3332CrossRefGoogle Scholar
  27. Coifman, R.R., Meyer, Y., & Wickerhauser, M.V. (1992). Wavelet analysis and signal processing, wavelets and their applications, Boston, MA: Jones and Bartlett, pp. 153-178Google Scholar
  28. Datta, S. (2003). Fractal structure of the Horsehead nebula (B 33). Astron. Astro-phys, 401, 193-196Google Scholar
  29. Daubechies, I. (1988). Orthonormal bases for compactly supported wavelets. Commun. Pure Appl. Math., 41, 909-996CrossRefMathSciNetzbMATHGoogle Scholar
  30. Daubechies, I. (1992). Ten lectures on wavelet. Philadelphia: SIAMGoogle Scholar
  31. Elmegreen, B.G., & Elmegreen, D.M. (2001). Fractal structure in galactic star fields. Astron. J., 121, 1507-1511CrossRefGoogle Scholar
  32. Falconer, K. (1992). Fractal geometry, mathematical foundations and applications. New York: WileyGoogle Scholar
  33. Falconer, K.J. (1989). Dimensions and measures of quasi-similar sets. Proc. Am. Mathl. Soc., 106, 543-554CrossRefMathSciNetzbMATHGoogle Scholar
  34. Feder, J. (1998). Fractals. New York: PlenumGoogle Scholar
  35. Frick, P., Beck, R., Berkhuijsen, E.M., & Patrickeyev, I. (2001). Scaling and cor-relation analysis of galactic images, MNRAS, 327, 1145-1157CrossRefGoogle Scholar
  36. Gabor, D., (1946). Theory of communications. J. Inst. Elect. Eng. (London), 93, 429-457Google Scholar
  37. Gaite, J., Manrubia, S.C. (2002). Scaling of voids and fractality in the galaxy distribution. Mon. Not. R. Astron. Soc., 335, 977-983CrossRefGoogle Scholar
  38. Gallagher, P.T., Phillips, K.J.H., Harra-Murinion, L.K., & Keenan, F.P. (1998). Properties of quiet Sun EUV network. Astron. Astrophys., 335, 733-745Google Scholar
  39. Grape, A. (1995). Introduction to wavelets. IEEE Comput. Sci. Eng., 2, 2Google Scholar
  40. Gross, D., Liu, Z., Tsukada, K., & Hanasaki, K. (2000). Experimenting with pixel-level NDT data fusion techniques. IEEE Trans. Inst. Measure., 49, 5CrossRefGoogle Scholar
  41. Han, M. (1995). Luminosity structure and objective classification of galaxies. As-trophys. J., 442, 504-522CrossRefGoogle Scholar
  42. Heck, A., & Perdang, J.M. (1991). Applying fractals in astronomy, Berlin Heidel-berg New York: SpringerCrossRefGoogle Scholar
  43. Jacquin, A.E. (1993). Fractal image coding - a review. Proc. IEEE, 81, 1451-1465CrossRefGoogle Scholar
  44. Jain, A.K. (1997). Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice HallGoogle Scholar
  45. Jain, A.K, & Dubes, R.C. (1988). Algorithms for clustering data. Englewood Cliffs, NJ: Prentice HallzbMATHGoogle Scholar
  46. Kaiser, G. (1994). Friendly guide to wavelets. Boston: BirkhaeuserzbMATHGoogle Scholar
  47. Kasparis, T., Charalampidis, D., Georgiopoulos, M., & Rolland, J. (2001). Seg-mentation of textured images based on fractals and image filtering. Pattern Recognit., 34, 1963-1973CrossRefzbMATHGoogle Scholar
  48. Klonowski, W. (2000). Signal and image analysis using chaos theory and fractal geometry. Mach. Graph. Vis., 9(1/2), 403-431Google Scholar
  49. Lawrence, J.K., Ruzmaikin, A.A., & Cadavid, A.C. (1993). Multifractal measure of the solar magnetic field. Astrophys. J., 417, 805CrossRefGoogle Scholar
  50. Lee, C.K., & Lee, W.K. (1998). Fast fractal image block coding based on local variances. IEEE Trans. Image Process., 7, 888-891CrossRefMathSciNetzbMATHGoogle Scholar
  51. Lekshmi, S., Revathy, K., & Prabhakaran Nayar, S.R. (2003). Galaxy classifica-tion using fractal signature. Astron. Astrophys., 405, 1163-1167CrossRefGoogle Scholar
  52. Lekshmi, S. (2003). Fractal techniques in image compression, analysis and classi-fication of images and remote sensed data, Ph.D. Thesis, Kerala UniversityGoogle Scholar
  53. Li, H., Liu, K.J.R., & Lo, S.C.B. (1997). Fractal modeling and segmentation for the enhancement of micro calcifications in digital mammograms. IEEE Trans. Med. Imaging, 16, 785-798CrossRefGoogle Scholar
  54. Li, H., Manjunath, B.S., & Mitra, S.K. (1995). Multi sensor image fusion using the wavelet transform, Graph. Models Image Process., 57, 235-245CrossRefGoogle Scholar
  55. Luo, D. (1998). Pattern recognition and image processing, Chichester, UK: Hor-woodGoogle Scholar
  56. Mallat, G. (1999). A wavelet tour of signal processing, 2nd edn., London: Aca-demiczbMATHGoogle Scholar
  57. Mallat, S.G. (1989). A theory for multiresolution signal decomposition: The wave-let representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693CrossRefzbMATHGoogle Scholar
  58. Mandal, M.K., Panchanathan, S., & Aboulnasr, T. (1994). Wavelets for image compression. Proceedings of the IEEE international symposium on time-frequency and time-scale analysisGoogle Scholar
  59. Mandelbrot, B.B. (1977). Fractals - form, chance and dimension. San Francisco, CA: FreemanzbMATHGoogle Scholar
  60. Mandelbrot, B.B. (1983). The fractal geometry of nature, Oxford: FreemanGoogle Scholar
  61. Meyer, Y., & Ryan, R.D. (1993). Wavelets, algorithms and applications, Phila-delphia, PA: SIAMzbMATHGoogle Scholar
  62. Meyer, Y. (1991). Wavelets and applications. Springer: Berlin Heidelberg New YorkGoogle Scholar
  63. Milovanov, A.V. (1994). Large-scale structure of clusters of galaxies and sponta-neous polymerization on fractal geometry. Astron. Rep., 38, 314-320Google Scholar
  64. Molinari, E., & Smareglia, R. (1998). Neural network method for galaxy classifi-cation. Astron. Astrophys., 330, 447-452Google Scholar
  65. Murtagh F., Starck J.L., & Bijoui A. (1995). Image restoration with noise suppres- sion using a multiresolution support. Astron. Astrophys., 112, 179-189Google Scholar
  66. Naim, A., Lahav, O., Sodre, L., Jr., & Storrie-Lombardi, M.C. (1995). Automated morphological classification of APM galaxies by supervised artificial neural networks. MNRAS, 275, 567-590Google Scholar
  67. Nayar, S.R.P., Radhika, V.N., Ramadas, P., & Revathy, K. (2002). Wavelet analy-sis of solar and solar wind parameters. Solar Phys., 212, 207-211Google Scholar
  68. O’Neil, T.C. (1997). The multi-fractal spectrum of quasi self-similar measures. J.Mathl. Anal. Appl., 211, 233-257CrossRefMathSciNetzbMATHGoogle Scholar
  69. Odewahn, S.C. (1995). Automated classification of astronomical images. Pub. As-tron. Soc. Pacific, 107, 770-773CrossRefGoogle Scholar
  70. Oritz, A., Solanki, S.K., Domingo, V., Fligge, M., & Snahuja, B. (2002). On the intensity contrast of solar photospheric faculae and network elements. Astron. Astrophys., 388, 1036-1047CrossRefGoogle Scholar
  71. Peleg, S., Naor, J., Hartley, R., & Avnir, D. (1984). Multiple resolution texture analysis and classification, IEEE Transactions on PAMI, PAMI-6, No. 4, July 1984Google Scholar
  72. Pentland, A.P. (1984). Fractal based description of natural scenes. IEEE Trans. PAMI, 6, 661-674Google Scholar
  73. Perdang, J. (1990). Astrophysical fractals: An overview and prospects. Vis. Astron., 33, 249-294CrossRefMathSciNetGoogle Scholar
  74. Petgen, H., Jurgens, H., Saupe, D. (1991). Fractals for the class room - Part I, In-troduction to fractals and chaos. Berlin Heidelberg New York: SpringerGoogle Scholar
  75. Philip, N.S., Wadadekar, Y., Kembhavi, A., & Joseph, K.B. (2002). A difference boosting neural network for automated star-galaxy classification. Astron. As-trophys., 1119-1126Google Scholar
  76. Press, W.H., Teukolsky, S.A., Vellering, W.T., & Flannery, B.P. (1996). Numeri-cal recipes. Cambridge: Cambridge University PressGoogle Scholar
  77. Raju, G. (2002). Image processing in astrophysics. Ph.D. Thesis, University of KeralaGoogle Scholar
  78. Revathy, K., Raju, G., & Prabhakaran Nayar, S.R. (1998). Wavelet based image compression and zooming, IT for the new generation. New Delhi: Tata McGraw Hill, pp. 191-196Google Scholar
  79. Revathy K., Raju, G., & Prabhakaran Nayar, S.R. (2000). Image zooming by wavelets. Fractals, 8, 247-253Google Scholar
  80. Revathy, K., & Lekshmi, S. (2003). Neuro-fuzzy classifier for astronomical im-ages. Fractals, 11, 289-294CrossRefGoogle Scholar
  81. Revathy, K., Lekshmi, S., & Prabhakaran Nayar, S.R. (2004). Fractal based fuzzy technique for detection of active regions from solar images. Proceedings of the SIPWorkIIGoogle Scholar
  82. Revathy, K., Lekshmi, S., & Prabhakaran Nayar, S.R. (2005). Fractal based fuzzy technique for detection of active regions from solar images. Solar Phys., 228, 43-53CrossRefGoogle Scholar
  83. Rockinger, O., & Benz, A.G. (1996). Pixel level fusion of image sequence using wavelet frames, Proceedings of the 16th Leeds applied shape research work-shop, Leeds University PressGoogle Scholar
  84. Said, A., & Perlman, W.A. (1996). A new, fast and efficient image code based on set partitioning in hierarchical trees. IEEE Trans. CSVT, 6, 243-250Google Scholar
  85. Sanz, J.L., Cayon, L., Matinez-Gonzalez, E., Ruiz, G.A., Diaz, F.J., Argueso, F., Silk, J., & Toffolati, L. (1999). Analysis of CMB maps with 2D wavelets. Astron. Astrophys. Suppl. Ser., 140, 99-105CrossRefGoogle Scholar
  86. Sato, T., Matsuoka, M., & Takayasu, H. (1996). Fractal image analysis of natural scenes and medical images. Fractals, 4, 463-468CrossRefzbMATHGoogle Scholar
  87. Shapiro J.M. (1993). Embedded image coding using zero trees of wavelet coeffi-cients. IEEE Trans. Signal Process., 41(12), 3445-3462CrossRefzbMATHGoogle Scholar
  88. Slezak, E., Bijaoui, A., & Mars, G. (1990). Identification of structures from galaxy counts, use of the wavelet transforms. Astron. Astrophys., 227, 301-316Google Scholar
  89. Slezak, E., De Laparent, V., & Bijaoui, A. (1993). Objective detection of voids and high density structures in the first CfA redshift survey slice. Astrophys. J., 409, 517-529CrossRefGoogle Scholar
  90. Starck, J.L., & Murtagh, F. (1998). Automatic noise estimation from the mul-tiresolution support. Pub. Astro. Soc. Pacific, 110, 193-199CrossRefGoogle Scholar
  91. Starck, J.L., & Murtagh, F. (2001). Astronomical image and signal processing. IEEE Signal Process., 18, 30-40CrossRefGoogle Scholar
  92. Starck, J.L., Murtagh, F., & Bijaoui, A. (1995a). Multi resolution support applied to image filtering and deconvolution. Graph. Model. Image Process., 57, 420-431CrossRefGoogle Scholar
  93. Starck, J.L., Murtagh, F., & Bijaoui, A. (1995b). Multiresolution and astronomical image processing. Astronomical data analysis software and systems IV, ASP Conference Series, Vol. 77Google Scholar
  94. Starck, J.L., Murtagh, F., & Bijaoui, A. (1998). Image processing and data analy-sis: The multi scale approach. Cambridge: Cambridge University PressCrossRefGoogle Scholar
  95. Stern, I. (1997). On fractal modeling in astrophysics: The effect of lacunarity on the convergence of algorithms for scaling exponents. In G. Hunt, & H.E. Payne (Eds.), Astronomical data analysis software and systems VI, ASP Con-ference Series, Vol. 125. Astronomical Society of the PacificGoogle Scholar
  96. Stevens, R.T. (1995). Understanding self similar fractals. New York: Prentice HallGoogle Scholar
  97. Tang, Y.Y., Tao, Y., & Lam, E.C.M. (2002). New method for feature extraction based on fractal behaviour. Pattern Recognit., 35, 1071-1081CrossRefzbMATHGoogle Scholar
  98. Tao, L., Du, Y., Rosner, R., & Cattaneo, F. (1995). On the spatial distribution of magnetic fields on the solar surface. Astrophys. J., 443, 434-443CrossRefGoogle Scholar
  99. Tarakanov, P.A. (2004). Formation of a fractal structure of giant molecular clouds in the galaxy. Astrophys., 47, 343-351CrossRefGoogle Scholar
  100. Turner, M.J., Blackedge, J.M., & Andrews, P.R. (1998). Fractal geometry in digi-tal imaging. London: AcademicGoogle Scholar
  101. Vehel, J., & Mignot, P. (1994). Multifractal segmentation of images. Fractals 2(3), 187-205Google Scholar
  102. Voss, R. (1985). Random fractals: Characterisation and measurement, scaling phenomena in disordered systems, In R. Pynn, & A. Skjeltorps (Eds.). New York: PlenumGoogle Scholar
  103. Vuduc, R. (1997). Image segmentation using fractal dimension GEOL 634. New York: Cornell UniversityGoogle Scholar
  104. Watson, S.R., & Preminger, D.G. (2000). Solar feature identification using con-trasts and contiguity. American Astronomical Society, SPD Meeting-32-01.24Google Scholar
  105. Zaritsky, D. (1995). Spectral classification of galaxies along the hubble sequence. Astron. J., 110, 1602-1612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • K. Revathy
    • 1
  1. 1.Department of Computer ScienceUniversity of KeralaTrivandrumIndia

Personalised recommendations