Advanced Feature Recognition and Classification Using Artificial Intelligence Paradigms

  • V. Schetinin
  • Valentina Zharkova
  • A. Brazhnikov
  • S. I. Zharkov
  • Emanuele Salerno
  • Luigi Bedini
  • Ercan E. Kuruoglu
  • Anna Tonazzini
  • Damjan Zazula
  • Boris Cigale
  • Hiroyuki Yoshida
Part of the Studies in Computational Intelligence book series (SCI, volume 46)


Independent Component Analysis Compute Tomography Colonography Independent Component Analysis Source Separation Cellular Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acar, B., Beaulieu, C.F., Gokturk, S.B., Tomasi, C., Paik, D.S., Jeffrey, R.B., Jr., et al. (2002). Edge displacement field-based classification for improved detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 21(12), 1461-1467Google Scholar
  2. Ahmed, A., Andrieu, C., Doucet, A., & Rayner, P.J.W. (2000). On-line non-stationary ICA using mixture models. In Proc. ICASSP 2000. IEEE Signal Processing Society, 5, 3148-3151Google Scholar
  3. Amari, S.I., & Cichocki, A. (1998). Adaptive blind signal processing - Neural network approaches. Proc. IEEE, 86, 2026-2048Google Scholar
  4. Andrieu, C., & Godsill, S.J. (2000). A particle filter for model based audio source separation. In P. Pajunen & J. Karhunen (Eds.), 2nd International workshop on ICA and blind signal separation. Helsinki, FL: Helsinki University of Technology, pp. 381-386Google Scholar
  5. Astley, S.M., & Gilbert, F.J. (2004). Computer-aided detection in mammography. Clin. Radiol., 59(5), 390-399Google Scholar
  6. Attias, H. (1999). Independent factor analysis. Neural Comput., 11, 803-851Google Scholar
  7. Aurich, V., Winkler, G., Hahn, K., Martin, A., & Rodenacker, K. (1999). Noise reduction in images: Some recent edge-preserving methods. J. Pattern Recog. Image Anal., 9, 749-766Google Scholar
  8. Avilo, G., Broda, K., & Gabbay, D. (2001). Symbolic knowledge extraction from trained neural networks. Artif. Intell., 125(1), 153-205Google Scholar
  9. Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E., Toffolatti, L., & Tonazzini, A. (2000). Mon. Not. R. Astron. Soc., 318, 769-780Google Scholar
  10. Baccigalupi, C., Perrotta, F., De Zotti, G., Smoot, G.F., Burigana, C., Maino, D., Bedini, L., & Salerno, E. (2004). Extracting cosmic microwave background polarization from satellite astrophysical maps. Mon. Not. R. Astron. Soc., 354, 55-70Google Scholar
  11. Bach, F.R., & Jordan, M.I. (2002). Tree-dependent component analysis. Proceedings of the eighteenth conference on uncertainty in artificial intelligence. San Francisco: Morgan KauffmannGoogle Scholar
  12. Bäck, T. (1994). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In Proceedings of the 1st IEEE conference on evolutionary computation. Piscataway, NJ: IEEE Press, pp. 57-62Google Scholar
  13. Bader, D.A., Jaja, J., Harwood, D., & Davis, L.S. (1996). Parallel algorithms for image enhancement and segmentation by region growing with experimental study. Proc. IEEE IPPS-96, 414Google Scholar
  14. Barber, C.B., Dobkin, D.P., & Huhdanpaa, H.T. (1996). The quickhull algorithm for convex hulls. ACM Trans. Math. Soft., 22(4), 469-483zbMATHMathSciNetGoogle Scholar
  15. Barreiro, R.B., Hobson, M.P., Banday, A.J., Lasenby, A.N., Stolyarov, V., Vielva, P., & Górski, K.M. (2004). Foreground separation using a flexible maximumentropy algorithm: An application to COBE data. Mon. Not. R. Astron. Soc., 351, 515-540Google Scholar
  16. Barros, A.K. (2000). The independence assumption: Dependent component analysis. In M. Girolami (Ed.), Advances in independent component analysis, Berlin Heidelberg New York: Springer, pp. 63-71Google Scholar
  17. Barros, A.K., & Cichocki, A. (2001). Extraction of specific signals with temporal structure. Neural Comput., 13, 1995-2003zbMATHGoogle Scholar
  18. Bedini, L., Bottini, S., Baccigalupi, C., Ballatore, P., Herranz, D., Kuruoglu, E.E., Salerno, E., & Tonazzini, A. (2003). A semi-blind second-order approach for statistical source separation in astrophysical maps. ISTI-CNR, Technical Report, 2003-TR-35, Pisa, Italy: ISTI-CNRGoogle Scholar
  19. Bedini, L., Herranz, D., Salerno, E., Baccigalupi, C., Kuruoglu, E.E., & Tonazzini, A. (2005). Separation of correlated astrophysical sources using multiple-lag data covariance matrices. EURASIP J. Appl. Signal Process., 2005(15), 2400-2412Google Scholar
  20. Bell, A.J., & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 7, 1129-1159Google Scholar
  21. Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique based on second order statistics. IEEE Trans. Signal Process., 45, 434-444Google Scholar
  22. Bennett, C., Hill, R.S., Hinshaw, G., Nolte, M.R., Odegard, N., Page, L., Spergel, D.N., Weiland, J.L., Wright, E.L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., & Wollack, E. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: Foreground emission. Astrophys. J. Suppl. Ser., 148, 97-117Google Scholar
  23. Bishop, C.M. (1995). Neural network for pattern recognition. Oxford: Oxford University PressGoogle Scholar
  24. Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases∼mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science
  25. Bouchet, F.R., Prunet, S., & Sethi, S.K. (1999). Multifrequency Wiener filtering of cosmic microwave background data with polarization. Mon. Not. R. Astron. Soc., 302, 663-676Google Scholar
  26. Bow, S.-T. (2002). Pattern recognition and image processing. New York, USA: DekkerGoogle Scholar
  27. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA: WadsworthzbMATHGoogle Scholar
  28. Brodley, C., & Utgoff, P. (1995). Multivariate decision trees. Mach. Learn., 19(11), 45-77zbMATHGoogle Scholar
  29. Bronzino, J.D. (1995). The biomedical engineering handbook. Boca Raton, USA: CRCGoogle Scholar
  30. Brugge, M.H., Stevens, J.H., Nijhuis, J.A.G., & Spaanenburg, L. (1998). License plate recognition using DTCNNs. Fifth IEEE International workshop on cellular neural networks and their applications proceedings, pp. 212-217Google Scholar
  31. Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE, 86, 2009-2025Google Scholar
  32. Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput., 11, 157-192Google Scholar
  33. Cardoso, J.-F., Snoussi, H., Delabrouille, J., & Patanchon, G. (2002). Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging. In Proceedings of the EUSIPCO 2002. European Association for Signal, Speech and Image Processing, 1, 561-564Google Scholar
  34. Casella, G., & Robert, C.P. (1999). Monte Carlo statistical methods. Berlin Heidelberg New York: SpringerzbMATHGoogle Scholar
  35. Castleman, K.R. (1996). Digital image processing. Upper Saddle River, USA: Prentice-HallGoogle Scholar
  36. Cayón, L., Sanz, J.L., Barreiro, R.B., Martínez-González, E., Vielva, P., Toffolatti, L., Silk, J., Diego, J.M., & Argüeso F. (2000). Isotropic wavelets: A powerful tool to extract point sources from cosmic microwave background map. Mon. Not. R. Astron. Soc., 315, 757-761Google Scholar
  37. Chandler, B., Rekeczky, C., Nishio, Y., & Ushida, A. (1999). Adaptive simulated annealing in CNN template learning. IEICE Trans. Fundam., E82(2), 398-402Google Scholar
  38. Chen, D., Liang, Z., Wax, M.R., Li, L., Li, B., & Kaufman, A.E. (2000). A novel approach to extract colon lumen from CT images for virtual colonoscopy. IEEE Trans. Med. Imaging, 19(12), 1220-1226Google Scholar
  39. Chipman, H., George, E., & McCullock R. (1998a). Bayesian CART model search. J. Am. Stat., 93, 935-960Google Scholar
  40. Chipman, H., George, E., & McCulloch, R. (1998b). Making sense of a forest of trees. Proceedings of the symposium on the interface, Fairfax station, VA: Interface FoundationGoogle Scholar
  41. Chua, L.O., Gulak, G., Pierzchala, E., & Rodríguez-Vázquez, A. (Ed.) (1998). Cellular neural networks and analog VLSI. Boston, USA: KluwerGoogle Scholar
  42. Chua, L.O., & Roska, T. (2001). Cellular neural networks and visual computing: Foundation and applications. Cambridge: Cambridge University PressGoogle Scholar
  43. Chua, L.O., & Yang, L. (1988). Cellular neural networks: Theory. IEEE Trans. Circuits Syst., 35(10), 1257-1272zbMATHMathSciNetGoogle Scholar
  44. Cichocki, A., & Amari, S. (2002). Adaptive blind signal and image processing. New York: WileyGoogle Scholar
  45. Cigale, B., Divjak, M., & Zazula, D. (2002). Application of simulated annealing to biosignal classification and segmentation. 15th IEEE Symposium on Computer-Based Medical Systems, 165-170Google Scholar
  46. Cigale, B., & Zazula, D. (2004). Segmentation of ovarian ultrasound images using cellular neural networks. Int. J. Pattern Recognit. Artif. Intell., 18(4), 563-581Google Scholar
  47. Comon, P. (1994). Independent component analysis: A new concept? Signal Process., 36, 287-314zbMATHGoogle Scholar
  48. Costagli, M., Kuruoglu, E.E., & Ahmed, A. (2004). Astrophysical image separation using particle filters. Lect. Notes Comput. Sci., 3195, 930-937Google Scholar
  49. Crounse, K.R., & Chua, L.O. (1995). Methods for image processing and pattern formation in cellular neural networks: A tutorial. IEEE Trans. Circuits Syst., 42 (10), 583-601MathSciNetGoogle Scholar
  50. Dachman, A.H., Näppi, J., Frimmel, H., & Yoshida, H. (2002). Sources of false positives in computerized detection of polyps in CT colonography. Radiology, 225 (P), 303Google Scholar
  51. Delabrouille, J., Cardoso, J.-F., & Patanchon, G. (2002). Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis. Mon. Not. R. Astron. Soc., 346, 1089-1102Google Scholar
  52. De Lathauwer, L. (1997). Signal processing based on multilinear algebra. Ph. D. thesis, Heverlee, Belgium: Katholieke Universiteit LeuvenGoogle Scholar
  53. Dempster, E.J., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via EM algorithm. Ann. R. Stat. Soc., 39, 1-38zbMATHMathSciNetGoogle Scholar
  54. Denison, D., Holmes, C., Malick, B., & Smith, A. (2002). Bayesian methods for nonlinear classification and regression. Chichester, UK: WileyzbMATHGoogle Scholar
  55. De Zotti, G., Toffolatti, L., Argüeso, F., Davies, R.D., Mazzotta, P., Partridge, R.B., Smoot, G.F., & Vittorio, N. (1999). The Planck surveyor mission: Astrophysical prospects. In 3K Cosmology. Proceedings of the EC-TMR Conference. Woodbury, NY: American Institute of Physics, p. 204Google Scholar
  56. Dietterich, T. (2000). Ensemble methods in machine learning. Proceedings of the multiple classifier systems. Lecture Notes in Computer Science. Berlin Heidelberg New York: Springer, pp. 1-15Google Scholar
  57. Domingos, P. (1998). Knowledge discovery via multiple models. Intell. Data Anal., 2, 187-202Google Scholar
  58. Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. Proc. Mach. Learn. Stanford: Morgan Kaufmann, pp. 223-230Google Scholar
  59. Dorai, C., & Jain, A.K. (1997). Cosmos - a representation scheme for 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell., 19, 1115-1130Google Scholar
  60. Doucet, A., De Freitas, J.F.G., & Gordon, N.J. (2001). Sequential Monte Carlo methods in practice. Berlin Heidelberg New York: SpringerzbMATHGoogle Scholar
  61. Duda, R.O., & Hart, P.E. (2001). Pattern classification. 2nd edn. New York: Wiley IntersciencezbMATHGoogle Scholar
  62. Edwards, D.C., Papaioannou, J., Jiang, Y., Kupinski, M.A., & Nishikawa, R.M. (2001). Eliminating false-positive microcalcification clustgers in a mammography cad scheme using a bayesian neural network. Paper presented at the Proc SPIEGoogle Scholar
  63. Everson, R.M., & Roberts, S.J. (2000). Particle Filters for Non-stationary ICA. In M. Girolami (Ed.), Advances in independent components analysis. Berlin Heidelberg New York: Springer, pp. 23-41Google Scholar
  64. Farlow, S. (1984). Self-organizing methods in modeling: GMDH-Type Algorithms. New York: DekkerzbMATHGoogle Scholar
  65. Fieldsend, J.E., Bailey, T.C., Everson, R.M., Krzanowski, W.J., Partridge, D, & Schetinin, V. (2003). Bayesian inductively learned modules for safety critical systems. Proceedings of the symposium on the interface. Computing Science and Statistics, Fairfax Station, USA: Interface FoundationGoogle Scholar
  66. Frimmel, H., Nappi, J., & Yoshida, H. (2005). Centerline-based colon segmentation for CT colonography. Med. Phys., 32(8), 2665-2672Google Scholar
  67. Galant, S. (1993). Neural network learning and expert systems. Cambridge, MA: MITGoogle Scholar
  68. Gao, J., Zhou, M., & Wang, H. (2001). A threshold and region growing method for filament disappearance area detection in solar images. Proceedings of the information science and systems. Laurel, MD: Johns Hopkins UniversityGoogle Scholar
  69. Gokturk, S.B., Tomasi, C., Acar, B., Beaulieu, C.F., Paik, D.S., Jeffrey, R.B., Jr., et al. (2001). A statistical 3D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 20(12), 1251-1260Google Scholar
  70. Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732zbMATHMathSciNetGoogle Scholar
  71. Handschin, J.E., & Mayne, D.Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9, 547-559zbMATHMathSciNetGoogle Scholar
  72. Hänggi, M., & Moschzty, G.S. (2000). Cellular neural network: Analysis, design and optimisation. Boston, USA: KluwerGoogle Scholar
  73. Harrer, H., & Nossek, J.A. (1992). Discrete-time cellular neural networks. Int. J. Circ. Theor. App. 20, 453-467zbMATHGoogle Scholar
  74. Haupt, R.L., & Haupt, S.E. (2004). Practical genetic algorithms. New Jersey, USA: Wiley IntersciencezbMATHGoogle Scholar
  75. Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey: Prentice HallzbMATHGoogle Scholar
  76. Haykin, S., (Ed.) (1994). Blind deconvolution. Englewood Cliffs, USA: Prentice-HallGoogle Scholar
  77. Haykin, S.,(Ed.) (2000). Unsupervised adaptive filtering, Vol. II: Blind deconvolution. New York: WileyGoogle Scholar
  78. Holland, J.H. (1992). Genetic algorithms. Sci. Am. 267, 66-72CrossRefGoogle Scholar
  79. Hobson, M.P., Jones, A.W., Lasenby, A.N., & Bouchet, F.R. (1998). Foreground separation methods for satellite observations of the cosmic microwave background. Mon. Not. R. Astron. Soc., 300, 1-29Google Scholar
  80. Hong, L., Liang, Z., Viswambharan, A., Kaufman, A., & Wax, M. (1997). Reconstruction and visualization of 3D models of colonic surface. IEEE Trans. Nuclear Sci., 44, 1297-1302Google Scholar
  81. Hopfield, J.J. (1982). Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558MathSciNetGoogle Scholar
  82. Hyvärinen, A. (1998). Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing, 22, 49-67zbMATHGoogle Scholar
  83. Hyvärinen, A. (1999a). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks, 10, 626-634Google Scholar
  84. Hyvärinen, A., (1999b). Gaussian moments for noisy independent component analysis. IEEE Signal Process. Lett., 6, 145-147Google Scholar
  85. Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: WileyGoogle Scholar
  86. Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Comput., 9, 1483-1492Google Scholar
  87. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications, Neural Network, 13, 411-430Google Scholar
  88. Ingber, L. (1989). Very fast simulated re-annealing. J. Math. Comput. Model., 12, 967-973zbMATHMathSciNetGoogle Scholar
  89. Iordanescu, G., Pickhardt, P.J., Choi, J.R., & Summers, R.M. (2005). Automated seed placement for colon segmentation in computed tomography colonography. Acad. Radiol., 12(2), 182-190Google Scholar
  90. Jerebko, A.K., Malley, J.D., Franaszek, M., & Summers, R.M. (2003a). Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. Acad. Radiol., 10(2), 154-160Google Scholar
  91. Jerebko, A.K., Summers, R.M., Malley, J.D., Franaszek, M., & Johnson, C.D. (2003b). Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med. Phys., 30(1), 52-60Google Scholar
  92. Johnson, C.D., & Dachman, A.H. (2000). CT colonography: The next colon screening examination? Radiology, 216(2), 331-341Google Scholar
  93. Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.V. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680MathSciNetGoogle Scholar
  94. Kiss, G., Van Cleynenbreugel, J., Thomeer, M., Suetens, P., & Marchal, G. (2002). Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur. Radiol., 12(1), 77-81Google Scholar
  95. Knuth, K. (1998). Bayesian source separation and localization. Proceedings of the SPIE: Bayesian inference for inverse problems, pp. 147-158Google Scholar
  96. Kobayashi, S., & Nomizu, K. (1963). Foundations of differential geometry I, Vol. 1. New York: InterscienceGoogle Scholar
  97. Kobayashi, S., & Nomizu, K. (1969). Foundations of differential geometry II, Vol. 2. New York: InterscienceGoogle Scholar
  98. Koenderink, J.J. (1990). Solid shape. Cambridge, MA: MITGoogle Scholar
  99. Kozek, T., Roska, T., & Chua, L.O. (1993). Genetic algorithm for CNN template learning. IEEE Trans. Circuits Syst. I, 40(6), 392-402Google Scholar
  100. Kuncheva, L. (2004). Combining pattern classifiers: Methods and algorithms. New York: WileyzbMATHGoogle Scholar
  101. Kupinski, M.A., Edwards, D.C., Giger, M.L., & Metz, C.E. (2001). Ideal observer approximation using bayesian classification neural networks. IEEE Trans. Med. Imaging, 20(9), 886-899Google Scholar
  102. Kuruoglu, E.E., Bedini, L., Paratore, M.T., Salerno, E., & Tonazzini, A. (2003). Source separation in astrophysical maps using independent factor analysis. Neural Network, 16, 479-491Google Scholar
  103. Kuruoglu, E., Tonazzini, A., & Bianchi, L. (2004). Source separation in astrophysical images modelled by Markov random fields. In Proceedings of the ICIP 2004. IEEE Signal Processing Society , pp. 2701-2704Google Scholar
  104. Laarhoven, P.J.M., & Aarts, E.H.L. (1987). Simulated annealing: Theory and applications. Dordrecht: ReidelzbMATHGoogle Scholar
  105. Lee, T., Lewicki, M., & Sejnowski, T. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput., 11, 409-433Google Scholar
  106. Lee, S.E., & Press, S.J. (1998). Robustness of Bayesian factor analysis estimates. Commun. Stat. A. Theor., 27, 1871-1893zbMATHMathSciNetGoogle Scholar
  107. Levin, B., Brooks, D., Smith, R.A., & Stone, A. (2003). Emerging technologies in screening for colorectal cancer: CT colonography, immunochemical fecal occult blood tests, and stool screening using molecular markers. CA Cancer J. Clin., 53(1), 44-55Google Scholar
  108. Li, H., & Santago, P. (2005). Automatic colon segmentation with dual scan CT colonography. J. Digit. Imaging, 18(1):42-54Google Scholar
  109. Lohmann, G. (1998). Volumetric image analysis. New York: WileyzbMATHGoogle Scholar
  110. Loncar, A., Kunz, R., & Tetzlaff, R. (2000). SCNN 2000 - Part I: Basic structure and features of the simulation system for cellular neural networks. Proceedings of the 6th IEEE International workshop on cellular neural networks and their applications (CNNA), Catania, pp. 123-128Google Scholar
  111. Madala, H., & Ivakhnenko, A. (1994). Inductive learning algorithms for complex systems modeling. Boca Raton: CRCzbMATHGoogle Scholar
  112. Manganaro, G., Arena, P., & Fortuna, L. (1999). Cellular neural network: Chaos, complexity and VLSI processing. Berlin Heidelberg New York: SpringerGoogle Scholar
  113. Magnussen, H., Nossek, J.A., & Chua, L.O. (1993). The learning problem for discrete-time cellular neural networks as a combinatorial optimization problem. Simulated annealing technical reports UCB//ERL-93-88. Berkeley: University of CaliforniaGoogle Scholar
  114. Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A.J., Bedini, L., Burigana, C., De Zotti, G., Gorski, K.M., & Salerno, E. (2002). All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA). Mon. Not. R. Astron. Soc., 334, 53-68Google Scholar
  115. Mani, A., Napel, S., Paik, D.S., Jeffrey, R.B., Jr., Yee, J., Olcott, E.W., et al. (2004). Computed tomography colonography: Feasibility of computer-aided polyp detection in a “first reader” paradigm. J. Comput. Assist. Tomogr., 28 (3), 318-326Google Scholar
  116. Masutani, Y., Yoshida, H., MacEneaney, P.M., & Dachman, A.H. (2001). Automated segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 25(4), 629-638Google Scholar
  117. Metz, C.E. (2000). Fundamental roc analysis. In J. Beutel, H.L. Kundel, & R.L.V. Metter (Eds.), Handbook of medical imaging Vol. 1, Bellingham, WA: SPIE, pp. 751-770Google Scholar
  118. Mohammad-Djafari, A. (2001). A Bayesian approach to source separation. Proc. AIP Conf., 567, 221-244MathSciNetGoogle Scholar
  119. Monga, O., & Benayoun, S. (1995). Using partial derivatives of 3D images to extract typical surface features. Comput. Vis. Image Und., 61, 171-189Google Scholar
  120. Morrin, M.M., & LaMont, J.T. (2003). Screening virtual colonoscopy - ready for prime time? N. Engl. J. Med., 349(23), 2261-2264Google Scholar
  121. Moulines, E., Cardoso, J.-F., & Gassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. Proceedings of the ICASSP 1997. IEEE Signal Processing Society, 5, 3617-3620Google Scholar
  122. Mulhall, B.P., Veerappan, G.R., & Jackson, J.L. (2005). Meta-analysis: Computed tomographic colonography. Ann. Intern. Med., 142(8), 635-650Google Scholar
  123. Müller, J.A., & Lemke, F. (2003). Self-organizing data mining: Extracting knowledge from data. Canada: TraffordGoogle Scholar
  124. Näppi, J., Dachman, A.H., MacEneaney, P., & Yoshida, H. (2002a). Automated knowledge-guided segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 26(4), 493-504Google Scholar
  125. Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2002b). Computer aided detection of masses in CT colonography: Techniques and evaluation. Radiology, 225(P), 406Google Scholar
  126. Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2004). A new high-performance cad scheme for the detection of polyps in CT colonography. Paper presented at the Medical Imaging 2004: Image ProcessingGoogle Scholar
  127. Näppi, J., Frimmel, H., & Yoshida, H. (2005). Virtual endoscopic visualization of the colon by shape-scale signatures. IEEE Trans. Inf. Technol. Biomed., 9(1), 120-131Google Scholar
  128. Näppi, J., & Yoshida, H. (2002). Automated detection of polyps with CT colonography: Evaluation of volumetric features for reduction of falsepositive findings. Acad. Radiol., 9(4), 386-397Google Scholar
  129. Näppi, J., & Yoshida, H. (2003). Feature-guided analysis for reduction of false positives in cad of polyps for computed tomographic colonography. Med. Phys., 30(7), 1592-1601Google Scholar
  130. Okamura, A., Dachman, A.H., Parsad, N., Näppi, J., & Yoshida, H. (2004). Evaluation of the effect of cad on observers' performance in detection of polyps in CT colonography. Paper presented at the CARS. Chicago, IL: Computer Assisted Radiology and SurgeryGoogle Scholar
  131. Paik, D.S., Beaulieu, C.F., Rubin, G.D., Acar, B., Jeffrey, R.B., Jr., Yee, J., et al. (2004). Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct. IEEE Trans. Med. Imaging, 23(6), 661-675Google Scholar
  132. Patanchon, G., Snoussi, H., Cardoso, J.-F., & Delabrouille, J. (2003). Component separation for Cosmic Microwave Background data: a blind approach based on spectral diversity. Proceedings of the PSIP 2003. Grenoble, France (extended version in astro-ph/0302078), pp. 17-20Google Scholar
  133. Perry, S.W., Wong H.-S., & Guan L. (2002). Adaptive image processing: A computational intelligence perspective. Boca Raton, USA: CRCzbMATHGoogle Scholar
  134. Pope, K.J., & Bogner, R.E. (1996). Blind signal separation. I. Linear, instantaneous combinations. Digit. Sign. Process., 6, 5-16Google Scholar
  135. Potočnik, B., & Zazula, D. (2002). Automated analysis of a sequence of ovarian ultrasound images, Part I - segmentation of single 2D images. Image Vis. Comput., 20(3), 217-225Google Scholar
  136. Qahwaji, R., & Green, R. (2001). Detection of closed regions in digital images. J. Comput. Appl., 8(4), 202-207Google Scholar
  137. Quinlan, J. (1993). C4.5: Programs for machine learning. Los Altos, CA: Morgan KaufmannGoogle Scholar
  138. Ripley, B. (1994). Neural networks and related methods for classification. J. Roy. Stat. Soc. B, 56(3), 409-456zbMATHMathSciNetGoogle Scholar
  139. Roska, T., Kék, L., Nemes, L., Zarándy, Á., Brendel, M., & Szolgay, P. (1998). CNN software library (templates and algorithms) version 7.2. Research report of the analogic (dual) and neural computing systems laboratory, Budapest, Hungary: MTA SZTAKIGoogle Scholar
  140. Russ, J.C. (2002). The image processing handbook. Boca Raton, USA: CRCGoogle Scholar
  141. Salerno, E., Baccigalupi, C., Bedini, L., Burigana, C., Farusi, A., Maino, D., Maris, M., Perrotta, F., & Tonazzini, A. (2000). Independent component analysis approach to detect the cosmic microwave background radiation from satellite measurements. Pisa, Italy: ISTI-CNR, technical report B4-04-04-00Google Scholar
  142. Salzberg, S., Delcher, A., Fasman, K., & Henderson, J. (1998). A decision tree system for finding genes in DNA. Comput. Biol., 5, 667-680Google Scholar
  143. Schetinin, V. (2003). A learning algorithm for evolving cascade neural networks. Neural Process Lett., 17, 21-31Google Scholar
  144. Schetinin, V., Fieldsend, J.E., Partridge, D., Krzanowski, W.J., Everson, R.M., Bailey, T.C., & Hernandez, A. (2004). The Bayesian decision tree technique with a sweeping strategy. Proceedings of the IEEE conference on advances in intelligent systems - theory and applications, (AISTA 2004), Luxembourg: IEEE Computer SocietyGoogle Scholar
  145. Schetinin, V., & Schult, J. (2005). A neural network technique for learning concepts from electroencephalograms. Theor. Biosci., 124, 41-53Google Scholar
  146. Sethi, I., & Yoo, J. (1997). Structure-driven induction of decision tree classifiers through neural learning. Pattern Recogn., 30(11), 1893-1904Google Scholar
  147. Shulman, D., & Herve, J.Y. (1989). Regularization of discontinuous flow fields. Proceedings of the workshop on visual motion. IEEE Computer Society Press, pp. 81-85Google Scholar
  148. Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., Deamici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., & Wilkinson, D.T. (1992). Structure in the COBE differential microwave radiometer 1st-year maps. Astrophys. J., 396(1), L1Google Scholar
  149. Snoussi, H., Patanchon, G., Macias-Pérez, J., Mohammad-Djafari, A., & Delabrouille, J. (2001). Bayesian blind component separation for cosmic microwave background observation. Proceedings of the AIP workshop on Bayesian and maximum-entropy methods. American Institute of Physics, pp. 125-140Google Scholar
  150. Stolyarov, V., Hobson, M.P., Ashdown, M.A.J., & Lasenby, A.N. (2002). All-sky component separation for the Planck mission. Mon. Not. R. Astron. Soc., 336, 97-111Google Scholar
  151. Stolyarov, V., Hobson, M.P., Lasenby, A.N., & Barreiro, R.B. (2005). All-sky component separation in the presence of anisotropic noise and dust temperature variations. Mon. Not. R. Astron. Soc., 357, 145-155Google Scholar
  152. Stone, J.V., Porrill, J., Porter, N.R., & Wilkinson, I.W. (2002). Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage, 15, 407-421Google Scholar
  153. Summers, R.M., Beaulieu, C.F., Pusanik, L.M., Malley, J.D., Jeffrey, R.B., Jr., Glazer, D.I., et al. (2000). Automated polyp detector for CT colonography: Feasibility study. Radiology, 216(1), 284-290Google Scholar
  154. Summers, R.M., Johnson, C.D., Pusanik, L.M., Malley, J.D., Youssef, A.M., & Reed, J. E. (2001). Automated polyp detection at CT colonography: Feasibility assessment in a human population. Radiology, 219(1), 51-59Google Scholar
  155. Tegmark, M., Eisenstein, D.J., Hu, W., & de Oliveira-Costa A. (2000). Foregrounds and forecasts for the cosmic microwave background. Astrophys. J., 530, 133-165Google Scholar
  156. Tenorio, L., Jaffe, A.H., Hanany, S., & Lineweaver, C.H. (1999). Applications of wavelets to the analysis of cosmic microwave background maps. Mon. Not. R. Astron. Soc., 310, 823-834Google Scholar
  157. Thirion, J.-P., & Gourdon, A. (1995). Computing the differential characteristics of isointensity surfaces. Comput. Vis. Image Und., 61, 190-202Google Scholar
  158. Tonazzini, A., Bedini, L., Kuruoglu, E.E., & Salerno, E. (2003). Blind separation of auto-correlated images from noisy data using MRF models. Nara, Japan: Proceedings of the fourth international symposium on independent component analysis and blind source separation, pp. 675-680Google Scholar
  159. Tonazzini, A., Bedini, L., & Salerno, E. (2006). A Markov model for blind image separation by a mean-field EM algorithm. IEEE Transactions on image processing, 15, 473-482MathSciNetGoogle Scholar
  160. Tonazzini, A., & Gerace, I. (2005). Bayesian MRF-based blind source separation of convolutive mixtures of images. Proceedings of the EUSIPCO 2005, 4-8 September 2005, Antalya, Turkey: EUSIPCO Google Scholar
  161. Tong, L., Liu, R.W., Soon, V.C., & Huang, Y.-F. (1991). Indeterminacy and identifiability of blind identification. IEEE Transactions on circuits and systems, 38, 499-509zbMATHGoogle Scholar
  162. Torkkola, K. (1996). Blind separation of delayed sources based on information maximization. Atlanta, USA: IEEE International Conference on Acoustics, Speech & Signal Processing, 7-10Google Scholar
  163. Vielva, P., Martínez-González, E., Cayón, L., Diego, J.M., Sanz, J.L., & Toffolatti L. (2001). Predicted Planck extragalactic point-source catalogue. Mon. Not. R. Astron. Soc., 326, 181-191Google Scholar
  164. Vlaisavljević, V., Reljič, M., Lovrec, V.G., Zazula, D., & Sergent, N. (2003). Measurement of perifollicular blood flow of the dominant preovulatory follicle using 3D power Doppler. Ultrasound Obst. Gyn., 22(5), 520-526 Web page of AnaLogic Computers Ltd.
  165. Wyatt, C.L., Ge, Y., & Vining, D.J. (2000). Automatic segmentation of the colon for virtual colonoscopy. Comput. Med. Imaging Graph, 24(1), 1-9Google Scholar
  166. Yang, T. (2002). Handbook of CNN image processing: All you need to know about cellular neural networks. Tucson, USA: Yang's Scientific Research Institute LLCGoogle Scholar
  167. Yeredor, A. (2002). Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing, 50, 1545-1553MathSciNetGoogle Scholar
  168. Yoo, T.S. (Ed.) (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. Wellesey, USA: A K PetersGoogle Scholar
  169. Yoshida, H., & Dachman, A.H. (2004). Computer-aided diagnosis for CT colonography. Semin. Ultrasound CT, 25(5), 419-431Google Scholar
  170. Yoshida, H., & Dachman, A.H. (2005). Cad techniques, challenges, and controversies in computed tomographic colonography. Abdom. Imaging, 30(1), 26-41Google Scholar
  171. Yoshida, H., Masutani, Y., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002a). Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study. Radiology, 222(2), 327-336Google Scholar
  172. Yoshida, H., & Näppi, J. (2001). Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging, 20(12), 1261-1274Google Scholar
  173. Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002b). Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics, 22(4), 963-979Google Scholar
  174. Zharkova, V.V., Ipson, S.S., Qahwaji, R., Zharkov, S., & Benkhalil, A. (2003a). An automated detection of magnetic line inversion and its correlation with filaments elongation in solar images. Barcelona, Spain: Proceedings of the SMMSP-2003, pp. 115-121Google Scholar
  175. Zharkova, V.V., Ipson, S.S., Zharkov, S.I., Benkhalil, A., Aboudarham, J., & Bentley, R.D. (2003b). A full disk image standardization of the synoptic solar observations at the Meudon Observatory. Solar Phys., 214(1), 89Google Scholar
  176. Zharkova, V.V., & Schetinin, V. (2003). The recognition of filaments in solar images with an artificial neural network. Bruges, Belgium: Proceedings of the ESANN-2003Google Scholar
  177. Zharkova, V.V., & Schetinin, V. (2003, 2005). The recognition of filaments in solar images with an artificial neural network. Solar Phys., 228(1-2), 363-377Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • V. Schetinin
    • 1
  • Valentina Zharkova
    • 2
  • A. Brazhnikov
    • 3
  • S. I. Zharkov
    • 4
  • Emanuele Salerno
    • 5
  • Luigi Bedini
    • 6
  • Ercan E. Kuruoglu
    • 7
  • Anna Tonazzini
    • 8
  • Damjan Zazula
    • 9
  • Boris Cigale
    • 10
  • Hiroyuki Yoshida
    • 11
  1. 1.Department of Computing and Information SystemsUniversity of LutonLutonUK
  2. 2.Department of Computing and Department of CyberneticsBradford UniversityBradfordUK
  3. 3.Anvaser ConsultingCanada
  4. 4.Department of Applied MathematicsUniversity of SheffieldSheffieldUK
  5. 5.Istituto di Scienza e Tecnologie dell'Informazione – CNRPisaItaly
  6. 6.Istituto di Scienza e Tecnologie dell'Informazione – CNRPisaItaly
  7. 7.Istituto di Scienza e Tecnologie dell'Informazione – CNRPisaItaly
  8. 8.Istituto di Scienza e Tecnologie dell'Informazione – CNRPisaItaly
  9. 9.Electrical Engineering and Computer ScienceMariborSlovenia
  10. 10.Electrical Engineering and Computer ScienceMariborSlovenia
  11. 11.Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations