Skip to main content

Otolithenfunktion: Vernachlässigtes Element in Praxis und Klinik

  • Chapter
Schwindel

Part of the book series: HNO Praxis heute ((HNO,volume 27))

Auszug

Zur räumlichen Orientierung verfügt der Mensch, ebenso wie alle höheren Tierarten, über vestibuläre Sinnesorgane für die Wahrnehmung der Gravitation und die Transduktion von Rotation und Translation des Kopfes im Raum. Zusammen mit den Augen und den im Körper verteilten Propriozeptoren und Somatosensoren sind diese Organe für den koordinierten Ablauf aller natürlichen Bewegungen essenziell. Jede Kopfbewegung im dreidimensionalen Raum kann in eine Kombination von jeweils 3 Dreh und Linearbewegungskomponenten aufgelöst werden. Dementsprechend sind die Bogengänge und Otolithenorgane im Labyrinth so angeordnet, dass sowohl die 3 rotatorischen als auch die 3 translatorischen Freiheitsgrade vollständig erfasst werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baloh RW, Beykirch K, Honrubia V, Yee RD (1988) Eye Movements Induced by Linear Acceleration on a Parallel Swing. J Neurophysiol 60: 2000–2013

    PubMed  CAS  Google Scholar 

  • Bárány R (1907) Physiologie und Pathologie des Bogengangsapparates beim Menschen. Deuticke, Wien

    Google Scholar 

  • Basta D, Todt I, Eisenschenk A, Ernst A (2005) Vestibular evoked myogenic potentials induced by electrical stimulation of the human inferior vestibular nerve. Hear Res 204: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Bickford RG, Jacobson JL, Cody DTR. (1964) Nature of averaged evoked potentials to sound and other stimuli in man. Ann N Y Acad Sci 112: 204–223

    Article  PubMed  CAS  Google Scholar 

  • Böhmer A, Rickenmann J. (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular disease. J Vest Res, 5: 35–45

    Article  Google Scholar 

  • Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5): 537–542

    Article  PubMed  CAS  Google Scholar 

  • Brevern M von, Schmidt T, Schonfeld U, Lempert T, Clarke AH (2006) Utricular dysfunction in patients with benign paroxysmal positional vertigo. Otol Neurotol 27: 92–96

    Article  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1991) Videooculography — an alternative method for measurement of three-dimensional eye movements. In: Schmidt R, Zambarbieri D (eds) Oculomotor Control and Cognitive Processes. Elsevier, Amsterdam, 431–443

    Google Scholar 

  • Clarke AH, Engelhorn A, Scherer H (1996) Ocular counterrolling in response to asymmetric radial acceleration. Acta Otolaryngol 116: 652–656

    PubMed  CAS  Google Scholar 

  • Clarke AH, Engelhorn A (1998) Unilateral testing of utricular function. Exp Brain Res 121: 457–464

    Article  PubMed  CAS  Google Scholar 

  • Clarke AH, Schönfeld U, Hamann C, Scherer H (2001) Measuring unilateral otolith function via the otolith-ocular response and the subjective visual vertical. Acta Otolaryngol Suppl 545: 84–87

    Article  PubMed  CAS  Google Scholar 

  • Clarke AH, Ditterich J, Druen K, Schonfeld U, Steineke C (2002) Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav Res Methods Instrum Comput 34: 549–60

    PubMed  CAS  Google Scholar 

  • Clarke AH, Schönfeld U, Helling K (2003) Unilateral examination of utricle and saccule function. J Vest Res 13: 215–225

    CAS  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004: 359–76

    Article  PubMed  Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J. Neurol. Neurosurg. Psychiatry 57: 190–197

    PubMed  CAS  Google Scholar 

  • Colebatch JG (2001) Vestibular evoked potential. Curr Opin Neurol 14: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, van der Steen J, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from scleral coil recordings. Exp Brain Res 59: 185–196

    Article  PubMed  CAS  Google Scholar 

  • Corvera J, Hallpike CS, Schuster EHJ (1965) A new method for the anatomical reconstruction of the human macular planes. Acta Otolaryngol (Stockh) 49: 4–16

    Google Scholar 

  • Crane BT, Tian J, Wiest G, Demer JL (2003) Initiation of the human heave linear vestibulo-ocular reflex. Exp Brain Res 148: 247–255

    PubMed  Google Scholar 

  • Curthoys IM, Dai MJ, Halmagyi GM (1991) Human ocular torsional position before and after unilateral vestibular neurectomy. Exp Brain Res 85: 218–225

    Article  PubMed  CAS  Google Scholar 

  • Dai MJ, Curthoys IS, Halmagyi GM (1989) Linear acceleration perception in the roll plane before and after unilateral vestibular neurectomy. Exp Brain Res 77: 315–328

    Article  PubMed  CAS  Google Scholar 

  • Dai M, Kunin, M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151: 173–189

    Article  PubMed  Google Scholar 

  • de Graaf B, de Roo AJ (1996) Effects of long duration centrifugation on head movements and a psychomotor task. J Vestib Res 6: 23–29

    Article  PubMed  Google Scholar 

  • de Waele C (2001) VEMP Induced by High level Clicks. A New Test of Saccular Otolith Function. Adv Otorhinolaryngol 58: 98–109

    PubMed  Google Scholar 

  • Diamond SG, Markham CH (1983) Ocular counterrolling as an indicator of otolith function. Neurology 33: 1460–1469

    PubMed  CAS  Google Scholar 

  • Ferber-Viart C, Duclaux R, Colleaux B, Dubreuil C (1997) Myogenic vestibular-evoked potentials in normal subjects: A comparison between responses obtained from sternocleidomastoid and trapezius muscles. Acta Otolaryngol 117: 472–481

    PubMed  CAS  Google Scholar 

  • Fischer MHZ (1927) Messende Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen. v Graefe’s Arch Ophthal 118: 633–680

    Article  Google Scholar 

  • Furman J, Baloh RW (1992) Otolith-ocular testing in human subjects. Ann N Y Acad Sci 655: 431–451

    Article  Google Scholar 

  • Furman JM, Schor RH, Kamerer DB. (1993) Off-vertical axis rotational responses in patients with unilateral peripheral vestibular lesions. Ann Otol Rhinol Laryngol 102: 137–143

    PubMed  CAS  Google Scholar 

  • Glasauer S, Merfeld DM (1997) Modelling three dimensional vestibular responses during complex motion stimulation. In: Fetter M, Misslich H, Haslwanter T (Hrsg) Three-Dimensional Kinematic Principles of Eye-, Head-, and Limb Movements in Health and Disease. Harwood, Amsterdam, 387–398

    Google Scholar 

  • Gresty M, Lempert T (2001) Pathophysiology and clinical testing of otolith dysfunction. In: Tran Ba Huy P, Toupet M (eds) Otolith functions and disorders. Adv. Otorhinolaryngol. 58: 15–33

    Google Scholar 

  • Halmagyi GM, Curthoys I.S (1988) A clinical sign of canal paresis. Arch Neurol 45: 737–739

    PubMed  CAS  Google Scholar 

  • Halmagyi GM, Curthoys IS (1999) Clinical Testing of Otolith Function. Ann NY Acad Sci 871: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Hamann KF, Haarfeldt R (2006) Vestibulär evozierte myogene Potentiale. HNO 54: 415–428

    Article  PubMed  Google Scholar 

  • Heide G, Freitag S, Wollenberg I, Iro H, Schimrigk K, Dillmann U (1999) Click evoked myogenic potentials in the differential diagnosis of acute vertigo. J Neurol Neurosurg Psychiatry 66: 787–790

    Article  PubMed  CAS  Google Scholar 

  • Helling K, Hausmann S, Clarke A, Scherer H (2003) Experimentally induced motion sickness in fish: possible role of the otolith organs. Acta Otolaryngol 123: 488–492

    Article  PubMed  Google Scholar 

  • Helling K, Schonfeld U, Scherer H, Clarke AH (2006) Testing utricular function by means of on-axis rotation. Acta Otolaryngol 126: 587–593

    Article  PubMed  CAS  Google Scholar 

  • Helling K, Schonfeld U, Halbach A, Clarke AH (2007) Treatment of Menière’s disease by low-dosage intratympanic gentamicin application — effect on otolith function (zur Publikation eingereicht)

    Google Scholar 

  • Igarashi M (1974) Dimensional Study of the Vestibular End Organ Apparatus. Laryngoscope 77: 1806–1817

    Article  Google Scholar 

  • Jongkees LBW, Philipszoon AJ (1962) Nystagmus provoked by linear acceleration. Acta Physiol Phararmacol Neerl 10: 239–247

    CAS  Google Scholar 

  • Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hearing Res 45: 179–190

    Article  CAS  Google Scholar 

  • Kirienko NM, Money KE, Landolt JP, Graybiel A, Johnson WH (1984) Clinical testing of the otoliths: a critical assessment of ocular counterrolling. J Otolaryngol 13: 281–288

    PubMed  CAS  Google Scholar 

  • Lempert T, Gresty MA, Bronstein AM (1999) Horizontal linear vestibulo-ocular reflex testing in patients with peripheral vestibular disorders. Ann NY Acad Sci 871: 232–247

    Article  PubMed  CAS  Google Scholar 

  • Merfeld DM, Teiwes W, Clarke AH, Scherer H, Young LR (1996) The dynamic contributions of the otolith organs to human ocular torsion. Exp Brain Res 110: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Niven JI, Hixson WC, Correla MJ (1965) Elicitation of Horizontal Nystagmus by Periodic Linear Acceleration. Acta Otolaryngol 62: 429–440

    Google Scholar 

  • Paige GD (1989) The influence of target distance on eye movement responses during vertical linear motion. Exp Bain Res 77: 585–593

    CAS  Google Scholar 

  • Paige GD, Tomko DL (1991) Eye movement responses to linear head motion in the squirrel monkey — 1. Basic Characteristics. J Neurophysiol 65: 1170–1182

    PubMed  CAS  Google Scholar 

  • Paige GD (2002) Otolith function: basis for modern testing. Ann NY Acad Sci 956: 314–323

    PubMed  Google Scholar 

  • Ramat S, Zee DS (2002) Translational VOR Responses to Abrupt Interaural Accelerations in Normal Humans. Ann NY Acad Sci 956: 551–554

    PubMed  CAS  Google Scholar 

  • Rosenhall U (1972) Vestibular macular mapping in man. Ann Oto Rhinol Laryngol 81: 339–351

    CAS  Google Scholar 

  • Ross MD (2001) Complex vestibular macular anatomical relationships need a synthetic approach. Acta Otolaryngol Suppl 545: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Schwarz C, Busettine C, Miles FA (1989) Ocular responses to linear motion are inversely proportional to viewing distance. Science 245: 1394–1396

    Article  PubMed  CAS  Google Scholar 

  • Schwarz C, Miles FA (1991) Ocular responses to translation and their dependence on viewing distance — 1. Motion of the observer. J Neurophysiol 66: 851–864

    PubMed  CAS  Google Scholar 

  • Shotwell SL Jacobs R Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin HH (1966) The ultrastructure of the vestibular sense organ. In: Wolfson RJ (Hrg.) The vestibular system and its diseases. Philadelphia: University of Pennsylvania Press

    Google Scholar 

  • Takumida M, Wersäll J, Bagger-Sjöbäck D (1988) Stereocilia glycocalix and interconnections in the guinea pig vestibular organs. Acta Otolaryngol 106: 130–139

    Article  PubMed  CAS  Google Scholar 

  • Tian JR, Crane BT, Wiest G, Demer JL (2002) Effect of aging on the human initial interaural linear vestibulo-ocular reflex. Exp Brain Res 145: 142–149

    Article  PubMed  Google Scholar 

  • Timmer FC, Zhou G, Guinan JJ, Kujawa SG, Herrmann BS, Rauch SD (2006) Vestibular evoked myogenic potential (VEMP) in patients with Meniere’s disease with drop attacks. Laryngoscope 116: 776–779

    Article  PubMed  Google Scholar 

  • Todd NP, Cody FW (2000) Vestibular responses to loud dance music: a physiological basis of the »rock and roll threshold«? J Acoust Soc Am 107: 496–500

    Article  PubMed  CAS  Google Scholar 

  • Townsend GL, Cody DT (1971) The averaged inion response evoked by acoustic stimulation: its relation to the saccule. Ann Otol Rhinol Laryngol 80: 121–31

    PubMed  CAS  Google Scholar 

  • Uchino Y, Sasaki M, Sato H, Imagawa M, Suwa H, Isu N (1996) Utriculoocular Reflex. Arch of the Cat J Neurophysiol 76: 1896–1903

    CAS  Google Scholar 

  • Watanuki K, Schuknecht HF (1976) A morphological study of human vestibular sensory epithelia. Arch ORL 102: 583–588

    Google Scholar 

  • Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurol 64: 1682–1688

    Article  Google Scholar 

  • Westhofen M (1991) Die klinische Diagnostik der Otolithenfunktion. Otorhinolaryngol Nova 1: 26–36

    Google Scholar 

  • Wetzig J, Hofstetter-Degen K, Maurer J, von Baumgarten R (1992) Clinical verification of a unilateral otolith test. Acta Astronautica 27: 19–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Helling, K., Clarke, A.H. (2007). Otolithenfunktion: Vernachlässigtes Element in Praxis und Klinik. In: Biesinger, E., Iro, H. (eds) Schwindel. HNO Praxis heute, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47448-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47448-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47443-2

  • Online ISBN: 978-3-540-47448-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics