Skip to main content

Holographic Interferometry

  • Chapter
  • 225 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 60))

Abstract

The subject of holographic interferometry encompases construction, observation, and interpretation of interference patterns of waves of which at least one has been recorded on and reconstructed by a hologram. The principle of holographic interferometry is illustrated by Fig. 1.1 which displays a general arrangement for obtaining a hologram and reconstructing the wave recorded in it. As has been shown earlier, the interaction of the reconstructing wave with the pattern recorded in the hologram (Fig. 1.1b) results in a reconstruction of the object wave. If the reconstructing wave is an exact copy of the reference wave, then both phase and amplitude of the object wave will be faithfully reproduced. If we illuminate the hologram after removing the object, we will see the object image at the exact place and in the same state it occupied during hologram recording. If the object is not removed, then two waves will propagate simultaneously behind the hologram, namely, the wave reconstructed by the hologram, and another one diffracted directly by the object. These waves are coherent and can thus interfere; the interference pattern characterizes the changes which have occurred in the object in the time between hologram recording and observation of the interference pattern. If the state of the object has changed during the observation, for instance, as a result of a deformation or displacement, the interference pattern will have changed, too.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Vest Holographic Interferometry (Wiley, New York 1979)

    Google Scholar 

  2. W. Schumann, M. Dubas: Holographic Interferometry from the Scope of Deformation Analysis of Opaque Bodies, Springer Ser. Opt. Sci., Vol.16 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  3. M.H. Hormann: An application of wavefront reconstruction to interferometry. Appl. Opt. 4, 333–336(1965)

    Article  ADS  Google Scholar 

  4. L.H. Tannen A study of fringe clarity in laser interferometry and holography. J. Phys. E 1, 517–522(1968)

    ADS  Google Scholar 

  5. W.C. Gates: Holographic phase recording by interference between reconstructed wavefronts from separate holograms. Nature 220, 473–474 (1968)

    Article  ADS  Google Scholar 

  6. A. Havener, R. Radley: Dual hologram interferometry. Opt. Electron. 4, 48–52 (1972)

    Google Scholar 

  7. N. Abramson: Sandwich hologram interferometry: A new dimension in holographic comparison. Appl. Opt. 13, 2019–2025 (1974)

    Article  ADS  Google Scholar 

  8. N. Abramson: Sandwich hologram interferometry: 2. Some practical calculations. Appl. Opt. 14, 981–984 (1975)

    Article  ADS  Google Scholar 

  9. N. Abramson: Sandwich hologram interferometry. 4. Holographic studies of two milling machines. Appl. Opt. 16, 2521–2531 (1977)

    Article  ADS  Google Scholar 

  10. K.A. Stetson, R.L. Powell: Hologram interferometry. J. Opt. Soc. Am. 56, 1161–1166(1966)

    Article  ADS  Google Scholar 

  11. M.M. Butusov, Yu.G. Yurkevich: A simple arrangement for real-time holographic interferometry. Zh. Nauch. Prikl. Fotogr. Kinematogr. 4, 303–305 (1971)

    Google Scholar 

  12. Y.I. Ostrovsky, M.M. Butusov, G.V. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., Vol.20 (Springer, Berlin, Heidelberg 1980)

    Book  Google Scholar 

  13. B.U. Achia: A simple plate holder for on site wet processing of holograms in real-time holographic interferometry. J. Phys. E 5, 128–129 (1972)

    Article  ADS  Google Scholar 

  14. W. Van Deelen, P. Nisenson: Mirror blank testing by real-time holographic interferometry. Appl. Opt. 8, 951–955 (1969)

    Article  ADS  Google Scholar 

  15. N.G. Vlasov, K.N. Petrov, V.A. Marinovskii, A.E. Shtan’ko: On off-bench holographic interferometry, in Optiko-Geometricheskiye Metody Issledovaniya Deformatsii i Napryazhenii (optic-geometrical methods of strain and stress analysis) (DGU, Dnepropetrovsk 1978) pp.54–56

    Google Scholar 

  16. N. Maclead, D.N. Kapun A kinematically designed mount for the precise location of specimens for holographic interferometry. J. Phys. E 6, 423–424 (1973)

    Article  ADS  Google Scholar 

  17. LE. Furse: Kinematic design of fine mechanism in instruments. J. Phys. E 14, 264–271 (1981)

    Article  ADS  Google Scholar 

  18. K. Biedermann, N.-E. Molin: Combining hypersensitization in situ processing for time-average observation in real-time hologram interferometry. J. Phys. E 3, 669–681 (1970)

    Article  ADS  Google Scholar 

  19. A.A. Friesem, I.L. Walker Experimental investigation of some anomalies in photographie plates. Appl. Opt. 8, 1504–1506 (1969)

    Article  ADS  Google Scholar 

  20. A.B. Kudrin, P.I. Polukhin, N.A. Chichenev. Golografiya i Deformatsiya Metallov (holography and deformation of metals) (Metallurgiya, Moscow 1982)

    Google Scholar 

  21. Yu.M. Cherkasov, Yu.A. Pryakhin: Photothermoplastic Processes for Holography Based on High-Resolution, Semitransparent Films, ed. by G.A. Sobolev (Nauka, Leningrad 1979) pp.119–143

    Google Scholar 

  22. B. Ineichen, C. Liegeois, P. Meyrueis: Thermoplastic film camera for holography recording for extended objects in industrial application. Appl. Opt. 21, 2209–2214 (1982)

    Article  ADS  Google Scholar 

  23. K. Iwata, R. Nagata: Fringe formation in multiple-exposure holographic interferometry. Appl. Opt. 26, 995–1007 (1979)

    Google Scholar 

  24. J.M. Burch, A.E. Ennos, R.J. Wilton: Dual and multiple beam interferometry by wavefront reconstruction. Nature, 209, 1015–1016 (1966)

    Article  ADS  Google Scholar 

  25. K.A. Stetson: Fringe interpretation for hologram interferometry of rigid-body motion and homogeneous deformation. J. Opt. Soc. Am. 64, 1–10 (1974)

    Article  ADS  Google Scholar 

  26. J.D. Redman: Holographic velocity measurement. J. Sci. Instrum. 44, 1032–1033 (1967)

    Article  ADS  Google Scholar 

  27. R.L. Powell, K.A. Stetson: Interferometric analysis by wavefront reconstruction. J. Opt. Soc. Am. 55, 1593–1598 (1965)

    Article  ADS  Google Scholar 

  28. K.A. Stetson, R.L. Powell: Interferometric hologram evaluation and real-time vibration analysis of diffuse objects. J. Opt. Soc. Am. 55, 1694–1695 (1965)

    Article  Google Scholar 

  29. E.B. Aleksandrov, A.M. Bonch-Bruevich: Holographic study of surface deformation. Zhur. Tekh. Fiz. 57, 360–369 (1967)

    Google Scholar 

  30. A.E. Ennos: Measurement of in-plane surface strain by hologram interferometry. J. Phys. E 1, 731–734 (1968)

    Article  ADS  Google Scholar 

  31. J.E. Sollid: Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces. Appl. Opt. 8, 1587–1595 (1969)

    Article  ADS  Google Scholar 

  32. N.L. Hecht, J.E. Minardi, D. Lewis: Quantitative theory for predicting fring pattern formation in holographic interferometry. Appl. Opt. 12, 2665–2676 (1973)

    Article  ADS  Google Scholar 

  33. N.-E. Molin, K.A. Stetson: Measurement of fringe loci and localization in hologram interferometry for pivot motion, in-plane rotation and in-plane translation. Pt.I. Optik, 31, 157–177 (1970)

    Google Scholar 

  34. N.-E. Molin, K.A. Stetson: Measurement of fringe loci and localization in hologram interferometry for pivot motion, in-plane rotation and in-plane translation. Pt.II. Optik 31, 281–291 (1970)

    Google Scholar 

  35. I. Prikryl: Localization of interference fringes in holographic interferometry. Opt. Acta 21, 675–681 (1974)

    Article  ADS  Google Scholar 

  36. T. Tsuruta, N. Shiotake, Y. Itoh: Formation and localization of holographically produced interference fringes. Opt. Acta 16, 723–733 (1969)

    Article  ADS  Google Scholar 

  37. S. Walles: Visibility and localization of fringes in holographic interferometry of diffusely reflecting surfaces. Ark. Fys. 40, 299–403 (1970)

    Google Scholar 

  38. M. Yonemura: Geometrical theory of fringe localization in holographic interferometry. Opt. Acta 27, 1537–1549 (1980)

    Article  ADS  Google Scholar 

  39. K.A. Stetson: A rigorous treatment of the fringes of hologram interferometry. Optik 4, 386–400(1969)

    Google Scholar 

  40. R.F. Erf (ed.): Holographic Nondestructive Testing (Academic, New York 1974)

    Google Scholar 

  41. F. Grünewald, D. Kaletsch, V. Lehmann: Holographische interferometrie und deren quantitative Auswertung, demonstriert am Beispiel zylindrisher GEK-Rohre. Optik 37, 102–110 (1973)

    Google Scholar 

  42. D.L. Mader. Holographic interferometry on pipes: precision interpretation by least-squares fitting. Appl. Opt. 24, 3784–3790 (1985)

    Article  ADS  Google Scholar 

  43. I.A. Birger, Ya.G. Panovko (eds.): Prochnost, Ustoichivost, Kolebaniya, T.1 (strength, stability vibrations, Vol.1) (Mashinostroyeniye, Moscow 1968)

    Google Scholar 

  44. P.M. Boone: Use of reflection holograms in holographic interferometry and speckle correlation for measurement of surface displacement. Opt. Act. 22, 579–589(1975)

    Article  ADS  Google Scholar 

  45. D.B. Neumann, R.O. Penn: Off-table holography. Exp. Mech. 25, 241–244 (1975)

    Article  Google Scholar 

  46. A.E. Shtan’ko, M.N. Guzikov: Compact holographic interferometer for residual stress evaluation in structures, in Ostatochnye Tekhnologicheskiye Napryazheniya (residual technological stress) (AN SSSR, Moscow 1985) pp.366–370

    Google Scholar 

  47. V.J. Corcoran, R.W. Herron, J.G. Jaramillo: Generation of a hologram from a moving target. Appl. Opt. 5, 668–669 (1966)

    Article  ADS  Google Scholar 

  48. J.P. Waters: Object motion compensation by speckle reference beam holography. Appl. Opt. 11, 630–636 (1972)

    Article  ADS  Google Scholar 

  49. E. Champagne, L. Kersch: Control of holographic interferometric fringe patterns. J. Opt. Soc. Am. 59, 1535 (1969)

    Google Scholar 

  50. L.A. Kersch: Advanced concepts of holographic nondestructive testing. Mater. Eval.29, 125–129(1971)

    Google Scholar 

  51. A. Stimpfling, P. Smigielski: New method for compensating and measuring any motion of three-dimensional objects in holographic interferometry. Opt. Eng. 24, 821–823 (1985)

    Article  Google Scholar 

  52. N. Abramson, H. Bjelkhagen: Sandwich hologram interferometry: 5. Measurement of in-plane displacement and compensation for rigid body motion. Appl. Opt. 18, 2870–2880 (1979)

    Article  ADS  Google Scholar 

  53. LS. Klimenko, V.P. Ryabukho: Spatial filtration and holographic interferometry, in Voprosy Prikladnoi Golografii (problems in applied holography) (LNIP, Leningrad 1982) pp.62–80

    Google Scholar 

  54. LS. Klimenko, V.P. Ryabukho, B.V. Feduleev: On the separation of information concerning different motions in holographic interferometry based on spatial filtration. Opt. Spektr. 55, 140–147 (1983)

    Google Scholar 

  55. J.A. Gilbert, D.T. Vedden Development of holographic techniques to study thermally induced deformation. Exp. Mech. 21, 138–144 (1981)

    Article  Google Scholar 

  56. L.O. Heflinger, R.F. Wuerker, H. Spetzlen Thermal expansion coefficient measurement of diffusely reflecting samples by holographic interferometry. Rev. Sci. Instrum. 44, 629–633 (1973)

    Article  ADS  Google Scholar 

  57. S.A. Novikov, V.P. Shchepinov, V.S. Aistov: Study of residual deformation development in a MBNLZ roller band by coherent optics, in Dinamikai Prochnost Metallurgicheskikh Mashin (dynamics and strength of metallurgical equipment) (VNIIMETMASH, Moscow 1984) pp.47–52

    Google Scholar 

  58. T.R. Hsu, R.G. Moyen Application of holography in high temperature displacement measurements. Exp. Mech. 12, 431–432 (1972)

    Article  Google Scholar 

  59. K.A. Heines, B.P. Hildebrand: Surface-deformation measurement using the wavefront reconstruction technique. Appl. Opt. 5, 595–602 (1966)

    Article  ADS  Google Scholar 

  60. C.H.F. Velzel: Fringe contrast and fringe localization in holographic interferometry. J. Opt. Soc. Am. 60, 419–420 (1970)

    Article  Google Scholar 

  61. A.A. Voevodin, V.P. Kazak, I.N. Nagibina: Interpretation of holographic inter-ferograms in surface strain measurements. Zhur. Tekh. Fiz. 52, 703–708 (1982)

    Google Scholar 

  62. V.A. Zhilkin: Optical interference methods in strain studies. Zavod. Labor. 10, 57–63 (1981)

    Google Scholar 

  63. P. Hariharan, B.F. Oreb, N. Brown: Real-time holographic interferometry: A microcomputer system for the measurement of vector displacements. Appl. Opt. 22, 876–880 (1983)

    Article  ADS  Google Scholar 

  64. S. Millmore, J.A. Allsop: A qualitative investigation of holographic interferome-try techniques applied to the measurement of general displacement field. Strain 14, 106–111 (1978)

    Article  ADS  Google Scholar 

  65. S.K. Dhir, J.P. Sikora: An improved method for obtaining the general displacement field from a holographic interferogram. Exp. Mech. 12, 323–327 (1972)

    Article  Google Scholar 

  66. Yu.I. Ostrovsky: Golografiya (holography) (Nauka, Leningrad 1970)

    Google Scholar 

  67. L.A. Borynyak, S.I. Gerasimov, V.A. Zhilkin: Experimental techniques of interferogram recording and interpretation providing the required accuracy in strain tensor component determination. Avtometriya 1, 17–24 (1982)

    Google Scholar 

  68. A.E. Ennos, M.S. Virdee: Application of reflection holography to deformation measurement problems. Exp. Mech. 22, 202–209 (1982)

    Article  Google Scholar 

  69. P. Wesolowski: Some aspects of numberical in-plane strain analysis by reflection holography. Optik 71, 113–118 (1985)

    Google Scholar 

  70. Z. Füzessy: Improvement of the holographic method of displacement field measurement. Zhur. Tekh. Fiz. 49, 399–403 (1979)

    Google Scholar 

  71. Y.Y. Hung, C.P. Hu, D.R. Menley: Two improved methods of surface-displacement measurements by holographic interferometry. Opt. Commun. 8, 48–51 (1973)

    Article  ADS  Google Scholar 

  72. K. Scibayama, H. Uchiyama: Measurement of three-dimensional displacements by hologram interferometry. Appl. Opt. 10, 2150–2154 (1971)

    Article  ADS  Google Scholar 

  73. T. Matsumoto, K. Iwata, R. Nagata: Distortionless recording in double-exposure holographic interferometry. Appl. Opt. 12, 1660–1662 (1973)

    Article  ADS  Google Scholar 

  74. R.J. Pryputniewicz: Determination of the sensitivity vectors directly from holograms. J. Opt. Soc. Am. 67, 1351–1353 (1977)

    Article  ADS  Google Scholar 

  75. R. Pawluczyk, Z. Kraska: Diffuse illumination in holographic double-aperture interferometry. Appl. Opt. 24, 3072–3078 (1985)

    Article  ADS  Google Scholar 

  76. M.R. Wall: Zero motion fringe identification, in Applications de l’Holographic, Proc. Symp. Besançon 1970, ed. by J.C. Viénot, J. Bulabois, J. Pasteur. Paper 4.9

    Google Scholar 

  77. U. Köpf: Fringe order determination and zero motion fringe identification in holographic displacement measurements. Opt. Laser Technol. 5, 111–113 (1973)

    Article  ADS  Google Scholar 

  78. N. Abramson: The holo-diagram V: A device for practical interpreting of hologram interference fringes. Appl. Opt. 11, 1143–1147 (1972)

    Article  ADS  Google Scholar 

  79. N.G. Vlasov, A.E. Shtan’ko: Fringe order and sign determination. Zhur. Tekh. Fiz. 46, 196–197(1976)

    Google Scholar 

  80. H. Kohlen Holografische Interferometrie: V. Zur Problematik der Ordnungsbestimmung. Optik 60, 411–425 (1982)

    Google Scholar 

  81. I. Bogar. Calculation method to eliminate the sign problem of fringe order in holographic interferometry. Period. Polytechn. Mech. Eng. 24, 279–284 (1980)

    Google Scholar 

  82. B. Harnisch, W. Schreiber, L. Wenke: A method to avoid sign ambiguity in holographic interferometric displacement measurements. Opt. Acta 30, 699–703 (1983)

    Article  ADS  Google Scholar 

  83. Yu.A. Rakushin, Yu.N. Solodkin: Interpretation of holographic interferograms, in Golograficheskiye Izmeritelnye Sistemy (holographic measurement systems), ed. by A. Kozachok, (NETI, Novosibirsk 1976) pp.41–47

    Google Scholar 

  84. RJ. Jones, C. Wykes: Holographic and Speckle Interferometry (Cambridge Univ. Press, Cambridge 1983)

    Google Scholar 

  85. I.M. Nagibina, V.V. Khopov. Automated processing of holographic interferograms for determination of diffusely reflecting surface displacement vector. Izv. Vuzov. Priborostroyeniye 26, 80–84 (1983)

    ADS  Google Scholar 

  86. R. Dändliker, B. Ineichen, F.M. Mottien High resolution hologram interferometry by electronic phase measurement. Opt. Commun. 9, 412–416 (1973)

    Article  ADS  Google Scholar 

  87. R. Dändliker Heterodyne holographic interferometry. Progress in Optics 17 (North-Holland, Amsterdam 1980)

    Google Scholar 

  88. V.F. Bellani, A. Sona: Measurement of three-dimensional displacements by scanning a double exposure hologram. Appl. Opt. 13, 1337–1341 (1974)

    Article  ADS  Google Scholar 

  89. L. Ek, K. Biedermann: Analysis of a system for hologram interferometry with a continuously scanning reconstruction beam. Appl. Opt. 16, 2535–2542 (1977)

    Article  ADS  Google Scholar 

  90. L. Ek, K. Biedermann: Implementation of hologram interferometry with a continuously scanning reconstruction beam. Appl. Opt. 17, 1727–1732 (1978)

    Article  ADS  Google Scholar 

  91. A.E. Ennos, D.W. Robinson, D.C. Williams: Automatic fringe analysis in holographic interferometry. Opt. Acta. 32, 135–145 (1985)

    Article  ADS  Google Scholar 

  92. H. Kokler Untersuchungen zur quantitativen Analyse der holographischen Int-erferometrie. Optik 39, 229–235 (1974)

    Google Scholar 

  93. W. Osten: Some consideration on the statistical error analysis in holographic interferometry with application to an optimized interferometry. Opt. Acta. 32, 827–838 (1985)

    Article  ADS  Google Scholar 

  94. H. Kohlen Ein neues Verfahren zur quantitativen Auswertung holographischer Interferogrammen. Optik 47, 135–152 (1977)

    Google Scholar 

  95. H. Kohler General formulation of the holographic-interferometric evaluation methods. Optik 47, 469–475 (1977)

    Google Scholar 

  96. H. Kohlen Interferenzliniedynamik bei der quantitativen Auswertung holographischer Interferogrammen. Optik 47, 9–24 (1977)

    Google Scholar 

  97. H. Kohler. Zur Vermessung holographisch-interferometrischer Verformungsfelder. Optik 47, 271–282 (1977)

    Google Scholar 

  98. N.G. Vlasov, O.G. Lisin, Yu.I. Savilova: A simplified method of calculating holographic interferograms of diffusely reflecting objects. Zhur. Tekh. Fiz. 54, 2037–2039 (1984)

    Google Scholar 

  99. V.A. Zhilkin, L.A. Borynyak: Optical methods of determining small displacements and deformations in structural elements, in Golograficheskiye Izmeritel-nye Sistemy (holographic measurement systems), ed. by A. Kozachok (NETI, Novosibirsk 1976) pp.76–92

    Google Scholar 

  100. P.W. King III: Holographic interferometry technique utilizing two plates and relative fringe orders for measuring microdisplacements. Appl. Opt. 13, 231–233 (1974)

    Article  Google Scholar 

  101. N.G. Vlasov, A.E. Shtan’ko: Problems in holographic interferometry, in Proc. VIII All-Union School on Holography (LINP, Leningrad 1976) pp.202–231

    Google Scholar 

  102. Z. Füzessy, P. Wesolowski: Simplified static holographic evaluation method omitting the zero-order fringe. Opt. Eng. 24, 1023–1025 (1985)

    Article  ADS  Google Scholar 

  103. D. Bijl, R. Jones: A new theory for the practical interpretation of holographic interference patterns resulting from static surface displacements. Opt. Acta 21, 105–118(1974)

    Article  ADS  Google Scholar 

  104. R. Jones: An experimental verification of a new theory for the interpretation of holographic interference patterns resulting from static surface displacements. Opt. Acta 21, 257–266 (1974)

    Article  ADS  Google Scholar 

  105. W.C. Gate: Holographic measurement of surface distortion in three dimensions. Opt. Technol. 1, 247–250 (1969)

    Article  Google Scholar 

  106. P.M. Boone: Determination of three orthogonal displacement components from one double-exposure hologram. Opt. Laser Technol. 4, 162–167 (1972)

    Article  ADS  Google Scholar 

  107. P.M. Boone, L.C. De Backer Determination of three orthogonal displacement components from one double-exposure hologram. Optik 37, 61–81 (1973)

    Google Scholar 

  108. G.P. Monakhov-Ilyin, V.P. Shchepinov, B.A. Morozov, V.S. Aistov: Analysis of combined operation of structural elements by the finite element techniques and holographic interferometry. Vestnik Mashinostr. 6, 9–11 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ostrovsky, Y.I., Shchepinov, V.P., Yakovlev, V.V. (1991). Holographic Interferometry. In: Holographic Interferometry in Experimental Mechanics. Springer Series in Optical Sciences, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47068-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47068-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13862-5

  • Online ISBN: 978-3-540-47068-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics