Skip to main content

From Ant Trails to Pedestrian Dynamics — Learning from Nature

  • Conference paper

Abstract

Many insects like, for example, ants communicate via chemical signals. This process, called chemotaxis, allows them to build large trail systems which have many similarities with human transport networks. In order to investigate the dynamics and spatio-temporal organization of ants on an existing trail system we have proposed a stochastic cellular automaton model. In contrast to the situation in highway traffic, it predicts a non-monotonic speed-density relation. This effect has its origin in the formation of loose clusters, i.e. space regions of enhanced, but not maximal, density. Inspired by the behaviour of ants on their trails, we have also developed a model for pedestrian dynamics. In this approach the interaction between the pedestrians is implemented as “virtual chemotaxis”. In this way all interactions are strictly local and so even large crowds can be simulated very efficiently. In addition, the model is able to reproduce the empirically observed collective effects, e.g. the formation of lanes in counterflow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Chowdhury, L. Santen, and A. Schadschneider: Statistical Physics of Vehicular Traffic and Some Related Systems, Phys. Rep. 329, pp. 199 (2000).

    Article  MathSciNet  Google Scholar 

  2. D. Helbing: Traffic and Related Self-Driven Many-Particle Systems, Rev. Mod. Phys. 73, pp.1067 (2001).

    Article  Google Scholar 

  3. J.K. Parrish and L Edelstein-Keshet: Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation, Science 284, pp. 99 (1999).

    Article  Google Scholar 

  4. Y. Tu: Phases and Phase Transitions in Flocking Systems, Physica A281, 30 (2000).

    Google Scholar 

  5. E.M. Rauch, M.M. Millonas, and D.R. Chialvo: Pattern Formation and Functionality in Swarm Models, Phys. Lett. A 207, pp. 185 (1997).

    Article  MathSciNet  Google Scholar 

  6. B. Hölldobler and E.O. Wilson: The Ants, Belknap, Cambridge, USA (1990).

    Google Scholar 

  7. N.R. Franks: Evolution of Mass Transit Systems in Ants: A Tale of Two Societies, In: I.P. Woiwod, D.R. Reynolds, and C.D. Thomas (Eds.), Insect Movement: Mechanisms and Consequences, CAB International (2001).

    Google Scholar 

  8. S. Camenzine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau: Self-Organization in Biological Systems, Princeton University Press (2002).

    Google Scholar 

  9. A.S. Mikhailov and V. Calenbuhr: From Cells to Societies, Springer (2002).

    Google Scholar 

  10. E. Ben-Jacob: From Snowflake Formation to Growth of Bacterial Colonies, Contemp. Phys. 38, pp. 205 (1997).

    Article  Google Scholar 

  11. F. Schweitzer: Brownian Agents and Active Particles, Springer Series in Synergetics (2003).

    Google Scholar 

  12. E. Bonabeau, M. Dorigo, and G. Theraulaz: Inspiration for Optimization from Social Insect Behaviour, Nature 400, pp. 39 (2000).

    Article  Google Scholar 

  13. E. Bonabeu, M. Dorigo, and G. Theraulaz: Swarm Intelligence, Oxford University Press (1999).

    Google Scholar 

  14. D. Chowdhury, V. Guttal, K. Nishinari, and A. Schadschneider: A Cellular-Automata Model of Flow in Ant-Trails: Non-Monotonic Variation of Speed with Density, J. Phys. A 35, L573 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Nishinari, D. Chowdhury, and A. Schadschneider: Cluster Formation and Anomalous Fundamental Diagram in an Ant Trail Model, Phys. Rev. E 67, 036120 (2003).

    Article  Google Scholar 

  16. A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari: Collective Effects in Traffic on Bi-Directional Ant Trails, J. Theor. Biol. 231, pp. 279 (2004).

    Article  MathSciNet  Google Scholar 

  17. B. Derrida: An Exactly Soluble Non-Equilibrium System: The Asymmetric Simple Exclusion Process, Phys. Rep. 301, pp. 65 (1998).

    Article  MathSciNet  Google Scholar 

  18. K. Nagel and M. Schreckenberg: A Cellular Automaton Model for Freeway Traffic, J. Physique I 2, 2221 (1992).

    Article  Google Scholar 

  19. A. John, A. Kunwar, A. Namazi, D. Chowdhury, K. Nishinari, and A. Schadschneider: Traffic on Bi-Directional Ant-Trails, In: these proceedings, Springer (2006).

    Google Scholar 

  20. O.J. O’Loan, M.R. Evans, and M.E. Cates: Spontaneous Jamming in a One-Dimensional System: The Bus Route Model, Phys. Rev. E 58, pp. 1404 (1998).

    Article  Google Scholar 

  21. D. Chowdhury and R.C. Desai: Steady-States and Kinetics of Ordering in Bus-Route Models: Connection with the Nagel-Schreckenberg Model, Eur. Phys. J. B 15, pp. 375 (2000).

    Article  Google Scholar 

  22. M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito: Discrete Stochastic Models for Traffic Flow, Phys. Rev. E 51, pp. 2939 (1995).

    Article  Google Scholar 

  23. A. Kunwar, A. John, K. Nishinari, A. Schadschneider, and D. Chowdhury: Collective Traffic-Like Movement of Ants on a Trail: Dynamical Phases and Phase Transitions, J. Phys. Soc. Jpn. 73, pp. 2979 (2004).

    Article  MATH  Google Scholar 

  24. F. Spitzer: Interaction of Markov processes, Adv. Math. 5, pp. 246 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  25. M.R. Evans and T. Hanney: Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models, J. Phys. A 38, R195 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin (2002).

    Google Scholar 

  27. E.R. Galea (Ed.): Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, CMS Press, London (2003).

    Google Scholar 

  28. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, Simulation of Pedestrian Dynamics Using a 2-Dimensional Cellular Automaton, Physica A 295, pp. 507 (2001).

    Article  MATH  Google Scholar 

  29. A. Kirchner and A. Schadschneider: Simulation of Evacuation Processes Using a Bionics-Inspired Cellular Automaton Model for Pedestrian Dynamics, Physica A 312, pp. 260 (2002).

    Article  MATH  Google Scholar 

  30. A. Kirchner, K. Nishinari, and A. Schadschneider: Friction Effects and Clogging in a Cellular Automaton Model for Pedestrian Dynamics, Phys. Rev. E 67, 056122 (2003).

    Article  Google Scholar 

  31. A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider, and M. Schreckenberg: Discretization Effects and the Influence of Walking Speed in Cellular Automata Models for Pedestrian Dynamics, J. Stat. Mech. P10011 (2004).

    Google Scholar 

  32. K. Nishinari, A. Kirchner, A. Namazi, and A. Schadschneider: Extended Floor Field CA Model for Evacuation Dynamics, IEICE Trans. Inf. & Syst. E87-D, 726 (2004).

    Google Scholar 

  33. C. Burstedde, A. Schadschneider et al.: Cellular Automaton Approach to Pedestrian Dynamics-Applications, In: M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin, pp. 87–97 (2002).

    Google Scholar 

  34. A. Schadschneider et al.: Role of Conflict in the Field Cellular Automaton Model for Pedestrian Dynamics, In: E.R. Galea (Ed.): Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, CMS Press, London, pp. 51–62 (2003).

    Google Scholar 

  35. U. Weidmann: Transporttechnik der Fuβgäger, Schriftenreihe des IVT, Vol. 90, ETH Zürich (1992).

    Google Scholar 

  36. Highway Capacity Manual, Special Report 209, Chapter 13, Transportation Research Board, Washington DC (1994).

    Google Scholar 

  37. A. Seyfried, B. Steffen, and T. Lippert: Basics of Modelling the Pedestrian Flow, physics/0506189.

    Google Scholar 

  38. M. Burd, D. Archer, N. Aranwlela, and D.J. Stradling: Traffic Dynamics of the Leaf-Cutting Ant, Atta cephalotes, Am. Naturalist 159, pp. 283 (2002).

    Article  Google Scholar 

  39. M. Burd et al.: private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schadschneider, A., Chowdhury, D., Nishinari, K. (2007). From Ant Trails to Pedestrian Dynamics — Learning from Nature. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47064-9_46

Download citation

Publish with us

Policies and ethics