Skip to main content

Steps Toward the Fundamental Diagram — Empirical Results and Modelling

  • Conference paper

Abstract

The empirical relation between density and velocity (fundamental diagram) of pedestrian movement is not completely analyzed, particularly with regard to the ‘microscopic’ causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the single-file movement. We present experimental results for this system and discuss the following observations. The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-lane movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation.

For the modelling we treat pedestrians as self-driven objects moving in a continuous space. On the basis of a modified social force model we analyze qualitatively the influence of various approaches for the interactions of pedestrians on the resulting velocity-density relation. The one-dimensional system allows focusing on the role of the required length and remote force. We found that the reproduction of the typical form of the fundamental diagram is possible if the model increases the required length of a person with increasing current velocity. Furthermore we demonstrate the influence of a remote force on the velocity-density relation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin (2002).

    Google Scholar 

  2. E.R. Galea (Ed.): Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, CMS Press, London (2003).

    Google Scholar 

  3. D. Oeding: Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs, In: Straßenbau und Straßenverkehrstechnik, Heft 22, Bundesministerium für Verkehr, Abt. Straßenbau, Bonn (1963).

    Google Scholar 

  4. J.J. Fruin: Pedestrian Planning and Design, Elevator World, New York (1971).

    Google Scholar 

  5. W.M. Predtetschenski and A.I. Milinski: Personenströme in Gebäuden-Berechnungsmethoden für die Projektierung, Verlagsgesellschaft Rudolf Müller, Köln-Braunsfeld (1971).

    Google Scholar 

  6. U. Weidmann: Transporttechnik der Fußgänger, Schriftenreihe des IVT Nr. 90, zweite ergänzte Auflage, ETH Zülrich (1993).

    Google Scholar 

  7. A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes: The Fundamental Diagram of Pedestrian Movement Revisited, J.Stat. Mech., P10002 (2005).

    Google Scholar 

  8. P.D. Navin and R.J. Wheeler: Pedestrian Flow Characteristics, Traf. Engin. 39, pp. 31–36 (1969).

    Google Scholar 

  9. S.P. Hoogendoorn and W. Daamen: Pedestrian Behavior at Bottlenecks, Transp. Sci. 39/2, pp. 0147–0159 (2005).

    Article  Google Scholar 

  10. T. Meyer-König, H. Klüpfel, and M. Schreckenberg: Assessment and Analysis of Evacuation Processes on Passenger Ships by Microscopic Simulation, In: M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin, pp. 297–302 (2002).

    Google Scholar 

  11. A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider and M. Schreckenberg: Discretization Effects and the Influence of Walking Speed in Cellular Automata Models for Pedestrian Dynamics, J. Stat. Mech. P10011 (2004).

    Google Scholar 

  12. S.P. Hoogendoorn, P.H.L. Bovy, and W. Daamen: Microscopic Pedestrian Way-finding and Dynamics Modelling, In: M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin, pp. 123–154 (2002).

    Google Scholar 

  13. www.rimea.de

    Google Scholar 

  14. M. Muramatsu, T. Irie, and T. Nagatani: Jamming Transition in Pedestrian Counter Flow, Physica A 267, pp. 487–498 (1999).

    Article  Google Scholar 

  15. V.J. Blue and J.L. Adler: Cellular Automata Microsimulation of Bi-Directional Pedestrian Flows, J. Transp. Res. Board 1678, pp. 135–141 (2000)

    Google Scholar 

  16. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz: Simulation of Pedestrian Dynamics using a Two-Dimensional Cellular Automaton, Physica A 295, pp. 507–525 (2001).

    Article  MATH  Google Scholar 

  17. K. Takimoto and T. Nagatani: Spatio-Temporal Distribution of Escape Time in Evacuation Process, Physica A 320, pp. 611–621 (2003).

    Article  MATH  Google Scholar 

  18. A. Keßel, H. Klüpfel, J. Wahle, and M. Schreckenberg: Microscopic Simulation of Pedestrian Crowd Motion, In: M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin, pp. 193–200 (2002).

    Google Scholar 

  19. D. Helbing and P. Molnár: Social Force Model for Pedestrian Dynamics, Phys. Rev. E 51, pp. 4282–4286 (1995).

    Article  Google Scholar 

  20. S.P. Hoogendoorn and P.H.L. Bovy: Gas-Kinetic Modeling and Simulation of Pedestrian Flows, Transp. Res. Rec. 1710, pp. 28–36 (2000).

    Article  Google Scholar 

  21. P. Thompson and E. Marchant: A Computer Model for the Evacuation of Large Building Populations, Fire Safety Journal 24, pp. 131 (1995).

    Article  Google Scholar 

  22. V. Schneider and R. Könnecke: Simulating Evacuation Processes with ASERI, In: M. Schreckenberg and S.D. Sharma (Eds.): Proceedings of the International Conference on Pedestrian and Evacuation Dynamics, Springer, Berlin, pp. 303–313 (2002).

    Google Scholar 

  23. P. Molnár: Modellierung und Simulation der Dynamik von Fußgängerströmen, Shaker, Aachen (1996).

    Google Scholar 

  24. D. Helbing, I. Farkas, and T. Vicsek: Freezing by Heating in a Driven Mesoscopic System, Phys. Rev. Let. 84, pp. 1240–1243 (2000).

    Article  Google Scholar 

  25. D. Helbing, I. Farkas, and T. Vicsek: Simulating Dynamical Features of Escape Panic, Nature 407, pp. 487–490 (2000).

    Article  Google Scholar 

  26. T. Werner and D. Helbing: The Social Force Pedestrian Model Applied to Real Life Scenarios, In: E.R. Galea (Ed.), Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, CMS Press, London, pp. 17–26 (2002).

    Google Scholar 

  27. A. Seyfried, Bernhard Steffen and Thomas Lippert, Basics of Modelling the Pedestrian Flow, Physica A 368, 232–238 (2006).

    Google Scholar 

  28. B. D. Hankin and R. A. Wright, Passenger flow in subways, Operational Research Quarterly 9, 81–88 (1958)

    Article  Google Scholar 

  29. J. L. Pauls, Suggestions on evacuation models and research questions, Conference Proceedings of the 3rd International Symposium on Human Behaviour in Fire (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seyfried, A., Steffen, B., Klingsch, W., Lippert, T., Boltes, M. (2007). Steps Toward the Fundamental Diagram — Empirical Results and Modelling. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47064-9_36

Download citation

Publish with us

Policies and ethics