Skip to main content

GaAs and InGaAs Position-Controlled Quantum Dots Fabricated by Selective-Area Metalloorganic Vapor Phase Epitaxy

  • Chapter
Lateral Aligment of Epitaxial Quantum Dots

Part of the book series: Nano Science and Technolgy ((NANO))

  • 909 Accesses

Abstract

Recent advances in micro- and nanofabrication techniques and/or crystal growth have made it possible to fabricate quantum functional devices with semiconductor quantum nanostructures such as quantum wires (QWRs) and quantum dots (QDs). In particular, the fabrication technique utilizing the nature of crystal growth is very promising, since it enables us to form highquality nanostructures free from process-induced damage and contamination in a relatively simple way. For example, self-assembled QDs (SAQDs) using the Stranski–Krastanow (SK) growth mode [1,2] have been shown to possess excellent optical properties reflecting their discrete density of states [3–8] and to realize various optoelectronic devices such as low-threshold, temperatureinsensitive laser diodes [9] and semiconductor optical amplifiers [10]. More recently, the atom-like properties of their electronic state were exemplified by the generation of single-photon emitters [11–14] as well as coherent spectroscopy [15–19].

Major and promising applications of QDs are also found in the field of electronics, such as single-electron tunneling (SET) transistors [20–22] and singleelectron (SE) memories [23–29]. In the former, a QD is used as a Coulomb island for the electron and QWRs are coupled to it through tunneling barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Krishnamurthy, C.M. Reaves, S.P. DenBaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993)

    Article  Google Scholar 

  2. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, O. Vatel, Appl. Phys. Lett. 64, 196 (1994)

    Article  CAS  Google Scholar 

  3. J.-Y. Marzin, J.-M. Gérard,A. Izraël, D. Barrier, G. Bastard, Phys. Rev. Lett. 73, 716 (1994)

    Article  CAS  Google Scholar 

  4. D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, L. samuelson, Appl. Phys. Lett. 69, 749 (1996)

    Article  CAS  Google Scholar 

  5. M. Grundmann, J. Christen, N.N. Ledentsof, J. Böhrer, D. Bimberg, S.S. Ruvimov, P. Werner, R. Richter, U. Gösele, J. Heydenreich, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, P.S. Kop'ef, Z.I. Alferov, Phys. Rev. Lett. 74, 4043 (1995)

    Article  CAS  Google Scholar 

  6. E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 80, 4991 (1998)

    Article  CAS  Google Scholar 

  7. L. Landin, M.S. Miller, M.-E. Pristol, C.E. Pryor, L. Samuelson, Science 280, 262 (1998)

    Article  CAS  Google Scholar 

  8. J. Motohisa, A.P. Heberle, J.J. Baumber, J. Allam, Solid State Electron. 42, 1335 (1998)

    Article  CAS  Google Scholar 

  9. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop'ev, Z.I. Alferov, U. Richter, P. Werner, U. Gösele, J. Heydenreich, Electron. Lett. 30, 1416 (1994)

    Article  CAS  Google Scholar 

  10. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, H. Ishikawa, IEEE Photonics Technol. Lett. 12, 1301 (2000)

    Article  Google Scholar 

  11. C. Santori, M. Pelton, G.S. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001)

    Article  CAS  Google Scholar 

  12. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goodbar, M.-E. Pistol, L. Samuelson, G. Björk, Appl. Phys. Lett. 78, 2476 (2001)

    Article  CAS  Google Scholar 

  13. E. Moreau, I. Robert, J.M. Gérard, I. Abram, L. Manin, V. Thierry-Meig, Appl. Phys. Lett. 79, 2865 (2001)

    Article  CAS  Google Scholar 

  14. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Peper, Science 295, 102 (2002)

    Article  CAS  Google Scholar 

  15. H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A.L. Holmes, Jr., C.K. Shih, Phys. Rev. Lett. 88, 087401 (2002)

    Article  CAS  Google Scholar 

  16. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Michler, G. Abstreiter, Nature 418, 612 (2002)

    Article  CAS  Google Scholar 

  17. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Phys. Rev. B 66, 081306(R) (2002)

    Article  Google Scholar 

  18. L. Besombes, J.J. Baumberg, J. Motohisa, Phys. Rev. Lett. 90, 257402 (2003)

    Article  CAS  Google Scholar 

  19. A. Muller, Q.Q. Wang, P. Bianucci, C.K. Shih, Q.K. Xue, Appl. Phys. Lett. 84, 981 (2004)

    Article  CAS  Google Scholar 

  20. K.K. Likharev, IEEE Trans. Magn. 23, 1142 (1987)

    Article  Google Scholar 

  21. K.K. Likharev, Proc. IEEE 87, 606 (1999)

    Article  CAS  Google Scholar 

  22. H. Grabert, M. Devoret, Eds., Single Charge Tunneling (Plenum, New York, 1992)

    Google Scholar 

  23. K. Nakazato, R.J. Blaikie, J.R.A. Cleaver, H. Ahmed, Electron. Lett. 29, 384 (1993)

    Article  Google Scholar 

  24. K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, K. Seki, IEEE Trans. Electron. Dev. 41, 1628 (1994)

    Article  Google Scholar 

  25. G. Yusa, H. Sakaki, Electron. Lett. 32, 491 (1996)

    Article  CAS  Google Scholar 

  26. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, Appl. Phys. Lett. 68, 1377 (1996)

    Article  CAS  Google Scholar 

  27. L. Guo, E. Leobandung, L. Zhuang, S.Y. Chou, J. Vac. Sci. Technol. B 15, 2840 (1997)

    Article  CAS  Google Scholar 

  28. N.J. Stone, H. Ahmed, Appl. Phys. Lett. 73, 2134 (1998)

    Article  CAS  Google Scholar 

  29. K. Koike, K. Saitoh, S. Li, S. Sasa, M. Inoue, M. Yano, Appl. Phys. Lett. 76, 1464 (2000)

    Article  CAS  Google Scholar 

  30. J. Motohisa, T. Terasawa, T. Kusuhara, F. Nakajima, T. Fukui, Conference Proc. of 2001 International Conference on Indium Phosphide and Related Materials (IEEE Catalog Number , 01CH37198), IEEE, Piscataway, NJ, USA, p. 370 (2001)

    Google Scholar 

  31. T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, Y. Arakawa, Appl. Phys. Lett. 84, 2817 (2004); and references therein

    Article  CAS  Google Scholar 

  32. K.C. Rajkumar, A. Madhukar, K. Rammohan, D.H. Rich, P. Chen, L. Chen, Appl. Phys. Lett. 63, 2905 (1993)

    Article  CAS  Google Scholar 

  33. J. Motohisa, K. Kumakura, Kazuhide, M. Kishida, T. Yamazaki, T. Fukui, H. Hasegawa, Jpn. J. Appl. Phys. 34, 1098 (1995)

    Article  CAS  Google Scholar 

  34. A. Hartmann, L. Loubies, F. Reinhardt, E. Kapon, Appl. Phys. Lett. 71 1314 (1997)

    Article  CAS  Google Scholar 

  35. M. Digler, R.J. Haug, K. Eberl, K. von Klitzing, Semicond. Sci. Technol. 11, 1493 (1996)

    Article  Google Scholar 

  36. Y. Hanada, Yuuki, N. Ono, Nobuki, H. Fujikura, H. Hasegawa, Solid State Electron. 42, 1413 (1998)

    Article  CAS  Google Scholar 

  37. T. Fukui, S. Ando, T. Tokura, T. Toriyama, Appl. Phys. Lett. 58, 2018 (1991)

    Article  CAS  Google Scholar 

  38. Y.D. Galeuchet, H. Rothuizen, P. Roentgen, Appl. Phys. Lett. 58, 2423 (1991)

    Article  CAS  Google Scholar 

  39. Y. Nagamune, S. Tsukamot, M. Nishioka, Y. Arakawa, in Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, Japan Society of Applied Physics, Tokyo, Japan (1991), p. 689

    Google Scholar 

  40. K. Kumakura, J. Motohisa, T. Fukui, J. Cryst. Growth 170 700 (1997)

    Article  CAS  Google Scholar 

  41. N. Ooike, J. Motohisa, T. Fukui, J. Cryst. Growth 272, 175 (2004)

    Article  CAS  Google Scholar 

  42. F. Nakajima, Y. Ogasawara, J. Motohisa, T. Fukui, J. Appl. Phys. 90, 2606 (2001)

    Article  CAS  Google Scholar 

  43. J. Motohisa, F. Nakajima, T. Fukui, W.G. van der Wiel, J.M. Elzerman, S. De Franceschi, L.P. Kouwenhoven, Appl. Phys. Lett. 80, 2797 (2002)

    Article  CAS  Google Scholar 

  44. F. Nakajima, Y. Miyoshi, J. Motohisa, T. Fukui, Appl. Phys. Lett. 83, 2680 (2003)

    Article  CAS  Google Scholar 

  45. H.J. Kim, J. Motohisa, T. Fukui, Appl. Phys. Lett. 81, 5147 (2002)

    Article  CAS  Google Scholar 

  46. H.J. Kim, J. Motohisa, T. Fukui, Nanotechnology, 15, 292 (2004)

    Article  CAS  Google Scholar 

  47. K. Yamaguchi, K. Okamoto, Appl. Phys. Lett. 59, 3580 (1991)

    Article  CAS  Google Scholar 

  48. K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui, H. Hasegawa Jpn. J. Appl. Phys. 34 4387 (1995)

    Article  CAS  Google Scholar 

  49. Y. Aritsuka, T. Umeda, J. Motohisa, T. Fukui, Mater. Res. Soc. Symp. Proc. 97, 570 (1999)

    Google Scholar 

  50. T. Fujii, M. Ekawa, S. Yamazaki, J. Cryst. Growth 146, 475 (1995)

    Article  CAS  Google Scholar 

  51. J.R. Tucker, J. Appl. Phys. 72, 4399 (1992)

    Article  Google Scholar 

  52. F. Nakajima, K. Kumakura, J. Motohisa, T. Fukui, Jpn. J. Appl. Phys. 38, 415 (1999)

    Article  CAS  Google Scholar 

  53. N.J. Stone, H. Ahmed, Electron. Lett. 35, 1883 (1999)

    Article  Google Scholar 

  54. Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, K. Murase, Appl. Phys. Lett. 76, 3121 (2000)

    Article  CAS  Google Scholar 

  55. C.P. Heij, P. Hadley, J.E. Mooij, Appl. Phys. Lett. 78, 1140 (2001)

    Article  CAS  Google Scholar 

  56. S.B. Akers, IEEE Trans. Comput. C-27, 509 (1978)

    Google Scholar 

  57. N. Asahi, M. Akazawa, Y. Amemiya, IEEE Trans. Electron. Devices 44, 1109 (1997)

    Article  Google Scholar 

  58. Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, K. Murase, Jpn. J. Appl. Phys. 39, 2325 (2000)

    Article  CAS  Google Scholar 

  59. S. Kasai, H. Hasegawa, IEEE Electron. Device Lett. 23, 446 (2002)

    Article  Google Scholar 

  60. F. Nakajima, Y. Ogasawara, J. Motohisa, T. Fukui, Physica E 13, 703 (2002)

    Article  CAS  Google Scholar 

  61. J.E. Mooij, in Extended Abst. 1993 Int. Conf. Solid-State Device and Materials, Japan Society of Applied Physics, Tokyo, Japan (1993), p. 339

    Google Scholar 

  62. M.T. Bohr,IEEE Trans. Nanotechnol. 1, 56 (2002)

    Article  Google Scholar 

  63. Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namatsu, K. Kurihara, K. Murase, Appl. Phys. Lett. 76, 637 (2000)

    Article  CAS  Google Scholar 

  64. S.K. Jung, S.W. Hwang, B.H. Choi, S.I. Kim, J.H. Park, Yong Kim, E.K. Kim, S.-K. Min, Appl. Phys. Lett. 74, 714 (1999)

    Article  CAS  Google Scholar 

  65. F. Heinrichsdorff, M.H. Mao, N. Kirstaedier, A. Krost, D. Bimberg, A.O. Kosogov, P. Werner, Appl. Phys. Lett. 71, 22 (1997)

    Article  CAS  Google Scholar 

  66. R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, D. Bimberg, Phys. Rev. B 57, 9050 (1998)

    Article  CAS  Google Scholar 

  67. M. Kitamura, M. Nishioka, J. Oshinowo, Y. Arakawa, Appl. Phys. Lett. 66, 3663 (1995)

    Article  CAS  Google Scholar 

  68. B.D. Min, Y. Kim, E.K. Kim, S.K. Min, M.J. Park, Phys. Rev. B 57, 11879 (1998)

    Article  CAS  Google Scholar 

  69. H.J. Kim, Y.J. Park, Y.M. Park, E.K. Kim, T.W. Kim, Appl. Phys. Lett. 78 3253 (2001)

    Article  CAS  Google Scholar 

  70. H.J. Kim, Y.J. Park, E.K. Kim, T.W. Kim, J. Cryst. Growth 223, 450 (2001)

    Article  CAS  Google Scholar 

  71. T. Ishihara, S. Lee, M. Akabori, J. Motohisa, T. Fukui, J. Cryst. Growth 237-239, 1476 (2002)

    Article  CAS  Google Scholar 

  72. T. Umeda, K. Kumakura, J. Mothohisa, T. Fukui, Physica E 2, 714 (1998)

    Article  CAS  Google Scholar 

  73. C.K. Hahn, J. Motohisa, T. Fukui, Appl. Phys. Lett. 26, 514 (2000)

    Google Scholar 

  74. J. Ishizaki, K. Okuri, T. Fukui, Jpn. J. Appl. Phys. 35, 1280 (1996)

    Article  CAS  Google Scholar 

  75. A. Konkar, A. Madhukar, P. Chen, Appl. Phys. Lett 72, 220 (1998)

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). GaAs and InGaAs Position-Controlled Quantum Dots Fabricated by Selective-Area Metalloorganic Vapor Phase Epitaxy. In: Lateral Aligment of Epitaxial Quantum Dots. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46936-0_25

Download citation

Publish with us

Policies and ethics