Skip to main content

Complex Elliptic Curves

  • Erratum
  • Chapter
  • 1193 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 326))

Abstract

This chapter has as first aim the presentation of the classical theory of elliptic functions and curves, as first studied in the nineteenth century by Abel, Jacobi, Legendre, Weierstrass.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-3-540-46916-2_1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

For Chapter I

  • BRIOT C., BOUQUET C.: Théorie des fonctions elliptiques, 2e éd. Paris, Gauthiers-Villars 1875, 2 vol.

    Google Scholar 

  • FRICKE R.: Die elliptischen Funktionen und ihre Anwendungen, Leipzig-Berlin, Teubner 1922.

    MATH  Google Scholar 

  • APPEL P., LACOUR E.: Principes de la théorie des fonctions elliptiques et applications, 2e éd. Paris, Gauthier-Villars 1922.

    Google Scholar 

  • WHITTAKER E.T., WATSON G.N.: (A course of) Modern analysis, Cambridge at the University Press, 4th ed. reprinted 1965.

    Google Scholar 

  • AHLFORS L.V.: Complex analysis, 2d ed. New-York, McGraw-Hill, 1966.

    MATH  Google Scholar 

  • WEIL A.: Introduction à l’étude des variétés kählériennes, Act. Sc. et Industrielles 1267, Paris, Hermann 1958.

    Google Scholar 

  • WEIL A.: Théorèmes fondamentaux de la théorie des fonctions thêta, Séminaire Bourbaki Mai 1949.

    Google Scholar 

  • SIEGEL C.L.: Vorlesungen über gewählte Kapitel der Funktionentheorie (Notes by Gottschling E., Klingen H.), Mathematische Institut der Universität, Göttingen, 1964.

    Google Scholar 

  • FORD L.R.: Automorphic functions, 2d ed. New-York, Chelsea Publ. 1951.

    Google Scholar 

  • LEHNER J.: Discontinuous groups and automorphic functions, (Math. Survey 8) Amer. Math. Soc. Providence, 1964.

    Google Scholar 

  • GUNNING R.C.: Lectures on modular forms (Notes by Brumer A.), Princeton University Press, Princeton N.J., 1962.

    MATH  Google Scholar 

  • SERRE J.-P.: Cours d’arithmétique (Collection “Le Mathématicien”), Presses Universitaires de France, Paris 1970.

    MATH  Google Scholar 

  • SERRE J.-P.: Arbres, amalgames et SL2, (notes rédigées avec la collaboration de Bass H.), to appear in the Springer-Verlag lecture notes in mathematics series, Berlin.

    Google Scholar 

  • SIEGEL C.L.: A simple proof of \( \eta ( - 1/\tau ) = \eta (\tau ) \sqrt {\tau /i} \) Mathematika 1, 1954, p.4 (Complete works, vol 2, p.188).

    Google Scholar 

  • SIEGEL C.L.: Analytische Zahlentheorie (Notes by Kürten K.F., Köhler G.), Mathematische Institut der Universität, Göttingen, 1964.

    MATH  Google Scholar 

  • ERDELYI-MAGNUS-OBERHETTINGER-TRICOMI: Higher Transcendental Functions, (Bateman Manuscript Project), New-York, McGraw-Hill, 1953,vol.2.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(1973). Complex Elliptic Curves. In: Elliptic Curves. Lecture Notes in Mathematics, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46916-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46916-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06309-4

  • Online ISBN: 978-3-540-46916-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics