Skip to main content

Nicotinic Acetylcholine Receptors as a Continuous Source for Rational Insecticides

  • Chapter
Insecticides Design Using Advanced Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abreo MA, Lin NH, Garvey DS, Gunn DE, Hettinger AM, Wasicak JT, Pavlik PA, Martin YC, Donnelly-Roberts DL, Anderson DJ et al (1996) Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 39:817–825.

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu M, Ozoe Y, Ueno T, Fujita T, Mochida K et al (1997) Sites of action of noncompetitive GABA antagonists in houseflies and rats: three-dimensional QSAR analysis. Pest Sci 49:319–332.

    Article  CAS  Google Scholar 

  • Akayama A, Minamida I (1999) Discovery of a new systemic insecticide, nitenpyram and its insecticidal properties. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 127–148.

    Google Scholar 

  • Arias HR (1997) Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Rev 25:133–191.

    Article  PubMed  CAS  Google Scholar 

  • Arnaud V, Berthelot M, le Questel JY (2005) Hydrogen-bond accepting strength of protonated nicotine. J Phys Chem 109:3767–3770.

    CAS  Google Scholar 

  • Artali R, Bombieri G, Meneghetti F (2005) Docking of the 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP). IL Farmaco 60:313–320.

    Article  PubMed  CAS  Google Scholar 

  • Badio B, Garraffo HM, Plummer CV, Padgett WL, Daly JW (1997) Synthesis and nicotinic activity of epiboxidine: an isoxazole analog of epibatidine. Eur J Pharmacol 321:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Bai D, Lummis SCR, Leicht W, Breer H, Satelle DB (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33:197–204.

    Article  CAS  Google Scholar 

  • Bettini S, D'ajello V, Maroli M (1973) Cartap activity on the cockroach nervous and neuromuscular transmission. Pestic Biochem Physiol 3:199–205.

    Article  CAS  Google Scholar 

  • Breer H, Sattelle DB (1987) Molecular properties and functions of insect acetylcholine receptors. J Insect Physiol 33:771–790.

    Article  CAS  Google Scholar 

  • Beers WH, Reich E (1970) Structure and activity of acetylcholine. Nature 225:917–922.

    Article  Google Scholar 

  • Bourne Y, Talley TT, Hansen SB, Taylor P, Marchot P (2005) Crystal structure of Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. 24:1512–1522.

    CAS  Google Scholar 

  • Brackmann F, Yufit DS, Howard JAK, Es-Sayed M, de Meijere A (2005) Synthesis of spirocyclopropanated analogues of imidacloprid and thiacloprid. Eur J Org Chem 3:600–609.

    Article  CAS  Google Scholar 

  • Breining SR (2004) Recent developments in the synthesis of nicotinic acetylcholine receptor ligands. Curr Top Med Chem 4:609–629.

    Article  PubMed  CAS  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Brisson A, Unwin N (1984) Tubular crystals of acetylcholine receptor. J Cell Biol 99:1202–1211.

    Article  PubMed  CAS  Google Scholar 

  • Byrne FJ, Castle S, Prabhaker N, Toscano NC (2003) Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manage Sci 59:347–352.

    Article  CAS  Google Scholar 

  • Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343–349.

    Article  CAS  Google Scholar 

  • Cascio M (2004) Structure and function of the glycine receptor and related nicotinoid receptors. J Biol Chem 279:19383–19386.

    Article  PubMed  CAS  Google Scholar 

  • Casida JE, Quistad GB (2004) Why insecticides are more toxic to insects than people: the unique toxicology of insects. J Pestic Sci (Tokyo, Japan) 29:81–86.

    Article  CAS  Google Scholar 

  • Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structure. Neuron 41:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Celie PHN, Kasheverov IE, Mordvintsev DY, Hogg RC, van Nierop P, van Elk R, van Rossum-Fikkert SE, Zhmak MN, Bertrand D, Tsetlin V, Sixma TK, Smit AB (2005a) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an conotoxin PnIA variant. Nature Struct Mol Biol 12:1–7.

    Article  CAS  Google Scholar 

  • Celie PHN, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK (2005b) Crystal structure of Acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem 280:26457–26466.

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Edelstein SJ (1998) Allosteric receptors after 30 years. Neuron 21:959–980.

    Article  PubMed  CAS  Google Scholar 

  • Chao SL, Casida JE (1997) Interaction of imidacloprid metabolites and analogues with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pestic Biochem Physiol 58:77–88.

    Article  CAS  Google Scholar 

  • Cheung H, Clarke BS, Beadle DJ (1992) A patch-clamp study of the action of a nitromethylene heterocycle insecticide on cockroach neurones growing in vitro. Pestic Sci 34:187–193.

    Article  CAS  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Toxicol 40:431–458.

    Article  CAS  Google Scholar 

  • Cosford NDP, Bleicher L, Herbaut A, McCallum JS, Vernier JM, Dawson H, Whitten JP, Adams P, Chavez-Noriega L, Correa LD, Crona JH, Mahaffy LS, Menzaghi F, Rao TS, Reid R, Sacaan AI, Santori E, Stauderman KA, Whelan K, Lloyd GK, McDonald IA (1996) (S)-(-)-5-Ethynyl-3-(1-methyl-2-pyrrolidinyl) pyridine maleate (SIB-1508Y): a novel anti-Parkinsonian agent with selectivity for neuronal nicotinic acetylcholine receptors. J Med Chem 39:3235–3237.

    Article  PubMed  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967.

    Article  CAS  Google Scholar 

  • Creemer LC, Kirst HA, Paschal JW, Worden TV (2000) Synthesis and insecticidal activity of spinosyn analogs functionally altered at the 2′-, 3′- and 4′-positions of the rhamnose moiety. J Antibiot 53:171–178.

    PubMed  CAS  Google Scholar 

  • Crouse GD, Sparks TC, Schoonover J, Gifford J, Dripps J, Bruce T, Larson LL, Garlich J, Hatton Ch, Hill RL, Worden TV, Martynow JG (2001) Recent advances in the chemistry of spinosyns. Pest Manage Sci 57:177–185.

    Article  CAS  Google Scholar 

  • Daborn P, Boundy S, Yen J, Pittendrigh B, ffrench-Constant R (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genom 266:556–563.

    Article  CAS  Google Scholar 

  • Damaj MI, Glassco W, Dukat M, May EL, Glennon RA, Martin BR (1996) Pharmacology of novel nicotinic analogs. Drug Dev Res 38:177–187.

    Article  CAS  Google Scholar 

  • Delpech VR, Ihara M, Coddou C, Matsuda K, Sattelle DB (2003) Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Inverteb Neurosci 5:29–35.

    Article  CAS  Google Scholar 

  • Denholm I, Devine G, Foster S, Gorman K, Nauen R (2002) Incidence and management of insecticide resistance to neonicotinoids. Proc Brighton Crop Protection Conference: Pests and Diseases 1:161–168.

    Google Scholar 

  • Dennehy TJ, Russel JS (1996) Susceptibility if Lygus bug populations in Arizona to acephate (Orthene) and bifenthrin (Capture) with related contrasts of other insecticides. In: Proceedings Beltwide Cotton Conferences, Nashville, TN, USA, Vol. 2, pp 771–776.

    Google Scholar 

  • Depnath B, Gayen S, Naskar SK, Roy K, Jha T (2003) Quantitative structure-activity relationship study on some azidopyridinyl neonicotinoid insecticides for their selective affinity towards the Drosophila nicotinic receptor over mammalian α4β2 receptor using electrotopological state atom index. Drug Des Discov 18:81–89.

    Article  CAS  Google Scholar 

  • Devine G, Harling Z, Scarr AW, Devonshire AL (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae. Pestic Sci 48:57–62.

    Article  CAS  Google Scholar 

  • De Taeye J, Zeegers-Huyskens T (1987) Infrared study of the proton acceptor ability of nicotine. Bull Soc Chim Bel 96:1–6.

    Google Scholar 

  • Dutertre S, Lewis RJ (2004) Computational approaches to understand α-conotoxin interactions at neuronal nicotinic receptors. Eur J Biochem 271:2327–2334.

    Article  PubMed  CAS  Google Scholar 

  • Dukat M, Dowd M, Damaj MI, Martin B, El-Zahabi MA, Glennon RA (1999) Synthesis, receptor binding and QSAR studies on 6-substituted nicotine derivatives as cholinergic ligands. Eur J Med Chem 34:31–40.

    Article  CAS  Google Scholar 

  • Elbert A, Nauen R (1996) Bioassays for imidacloprid for a resistance monitoring against the whitefly Bemisia tabaci. Proc Brighton Crop Protection Conference: Pests and Diseases 2:731–738.

    Google Scholar 

  • Elbert A, Nauen R, Cahill M, Devonshire AL, Scarr AW, Sone S, Steffens R (1996) Resistance management with chloronicotinyl insecticides using imidacloprid as an example. Pflanzenschutz-Nachrichten Bayer 49:5–53.

    CAS  Google Scholar 

  • Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel mode of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 50–74.

    Google Scholar 

  • Elbert A, Erdelen C, Kühnhold J, Nauen R, Schmidt HW (2000) Thiacloprid, a novel neonicotinoid insecticide for foliar application. Proc Brighton Crop Protection Conference: Pest and Diseases 1:21–26.

    Google Scholar 

  • Elbert A, Bailo Schleiermacher I, Brueggen KU, Nauen R, Rogers D, Steffens R, Denholm I (2005) Bayer CropScience guidelines on resistance management for neonicotinoids. Pflanzenschutz-Nachrichten Bayer 58:5–32.

    Google Scholar 

  • Foster SP, Denholm I, Thompson R (2003) Variation in response to neonicotinoid insecticides in peach-potato aphids, Myzus persicae (Hemiptera: Aphididae). Pest Manage Sci 59:166–173.

    Article  CAS  Google Scholar 

  • Glennon RA, Herndon JL, Dukat M (1994) Epibatidine-aided studies toward definition of a nicotine receptor pharmacophore. Med Chem Res 4:461–473.

    CAS  Google Scholar 

  • Glennon RA, Dukat M, Liao L (2004) Musings on α4β2 nicotinic acetylcholine (nACh) receptor pharmacophore model. Curr Topics Med Chem 4:631–644.

    Article  CAS  Google Scholar 

  • Graton J, Berthelot M, Gal JF, Laurence C, Lebreton J, Le Questel JY, Maria PC, Robins R (2003) The nicotinic pharmacophore: thermodynamics of the hydrogen-bonding complexation of nicotine, nornicotine, and models. J Org Chem 68:8208–8221.

    Article  PubMed  CAS  Google Scholar 

  • Grauso M, Reenan RA, Culetto E, Sattelle DB (2000) Novel putative nicotinic acetylcholine receptor subunit genes Dα5, Dα6, and Dα7 in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-toI pre-mRNA editing. Genetics 160:1519–1533.

    Google Scholar 

  • Grutter T, Le Novère N, Changeux JP (2004) Rational understanding of nicotinic receptors drug binding. Curr Topics Med Chem 4:645–651.

    Article  CAS  Google Scholar 

  • Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structures, physiological and pharmacological properties. In: Clementi F, Fornasari D, Gotti C (eds) Handbook of experimental pharmacology, vol. 144, neuronal nicotinic receptors. Springer, Berlin Heidelberg New York, pp 497–521.

    Google Scholar 

  • Henchman RH, Wang LH, Sine SM, Taylor P, McCammon JA (2005) Ligand-Induced conformational change in α7 nicotinic receptor ligand binding domain. Biophys J 88:2564–2576.

    Article  PubMed  CAS  Google Scholar 

  • Holt RA et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:96–97.

    Article  CAS  Google Scholar 

  • Holladay MW, Dart MJ, Lynch JK (1997) Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 40:4169–4194.

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth RM, Mota-Sanchez D, Whalon ME, Graphius E (2002) Comparative pharmokinetics of imidacloprid in susceptible and resistant Colorado potato beetles. Proceedings 10th IUPAC International Congress on the Chemistry of Crop Protection, Basel, 2002, 1:312.

    Google Scholar 

  • Horowitz AR, Kontsedalov S, Ishaaya I (2004) Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 97:2051–2056.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Williamson MS, Devonshire AL, Windass JD, Lansdell SJ, Millar NS (1999) Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. J Neurochem 73:380–389.

    Article  PubMed  CAS  Google Scholar 

  • Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48:4705–4745.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke P, Moriya K, Lantzsch R, Seifert H, Lindner W, Jelich K, Göhrt A, Beck ME, Etzel W (2001) Thiacloprid (Bay YRC2894) -A new member of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz-Nachrichten Bayer 54:147–160.

    CAS  Google Scholar 

  • Jeschke P, Schindler M, Beck M (2002) Neonicotinoid insecticides: retrospective consideration and prospects. Proc Brighton Crop Protection Conference: Pest and Diseases 1:137–144.

    Google Scholar 

  • Jeschke P, Uneme H, Benet-Buchholz J, Stölting J, Sirges W, Beck ME, Etzel W (2003) Clothianidin (TI-435) -The third member of the chloronicotinyl insecticide (CNIâ„¢) family. Pflanzenschutz-Nachrichten Bayer 56:5–24.

    CAS  Google Scholar 

  • Jeschke P (2004) The unique role of fluorine in the design of active ingredients for modern crop protection. Chem Bio Chem 5:570–589.

    CAS  Google Scholar 

  • Jeschke P, Nauen R (2004) Thiamethoxam: a neonicotinoid precursor converted to clothianidin in insects and plants. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004 (2004) ACS, Washington, DC ref. CAS 2004:655197.

    Google Scholar 

  • Jeschke P, Nauen R (2005) Neonicotinoid insecticides. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol. 5, Elsevier Pergamon, Oxford, pp 53–105.

    Chapter  Google Scholar 

  • Jiwajinda S, Hirai N, Watanabe K, Santisopasri V, Chuengsamarnyart N, Koshimizu K, Ohigashi H (2001) Occurrence of the insecticidal 16, 17-didehydro-16(E)-stemofoline in Stemona collinsae. Phytochemistry 56:693–695.

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Cenorhabditis elegans. Bioessays 26:39–49.

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187.

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Buckingham SD, Sattele DB (2005) Model organism: chemistry-to-gene screens in Caenorhabditis elegans. Nature Rev Drug Discov 4:321–330.

    Article  CAS  Google Scholar 

  • Kagabu S (1996) Studies on the synthesis and insecticidal activity of neonicotinoid compounds. J Pestic Sci 21:237–239.

    Google Scholar 

  • Kagabu S (1997) Chloronicotinyl insecticides—discovery, application and future perspective. Rev Toxicol 1:75–129.

    CAS  Google Scholar 

  • Kagabu S, Maienfisch P, Zhang A, Granda-Minones J, Haettenschwiler J, Hayser H, Maetzke T, Casida JE (2000) 5-Azidoimidacloprid and an acyclic analogue as candidate photoaffinity probes for mammalian and insect nicotinic acetylcholine receptors. J Med Chem 43:5003–5009.

    Article  PubMed  CAS  Google Scholar 

  • Kagabu S, Nishiwaki H, Sato K, Hibi M, Yamaoka N, Nakagawa Y (2002a) Nicotinic acetylcholine receptor binding of imidacloprid-related diaza compounds with various ring sizes and their insecticidal activity against Musca domestica. Pest Manage Sci 58:483–490.

    Article  CAS  Google Scholar 

  • Kagabu S, Matsuda K, Komai K (2002b) Preparation of dinotefuran related compounds and agonistic action on SADβ2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. J Pestic Sci 27:374–377.

    CAS  Google Scholar 

  • Kagabu S (2003) Molecular design of neonicotinoids:past, present and future. In: Voss G, Ramos G (eds) Chemistry of crop protection: progress and prospects in science and regulation. Wiley-VCH, New York, pp 193–212.

    Google Scholar 

  • Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kahlig H, Hofer O, Vajrodaya S, Greger H (2003) Insecticidal pyrido[1, 2-a]azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63:803–816.

    Article  PubMed  CAS  Google Scholar 

  • Kanne DB, Tomizawa M, Durkin KA, Casida JE (2005) 6′-Methylpyrido[3, 4-b]norhomotropane: synthesis and outstanding potency in relation to the α4β2 nicotinic receptor pharmacophor model. Bioorg Med Chem Lett 15:877–881.

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114.

    Article  PubMed  CAS  Google Scholar 

  • Kodaka K, Kinoshita K, Wakita T, Kawahara N, Yasui N (1998) MTI-446: a novel systemic insect control compound. Proc Brighton Crop Protection Conference: Pests and Diseases 1:21–26.

    Google Scholar 

  • Kollmeyer WD, Flattum RF, Foster JP, Powel JE, Schroeder ME, Soloway S (1999) Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE (eds) Neonicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 71–89.

    Google Scholar 

  • Koyanagi T, Haga T (1995) Bioisosterism in agrochemicals. In: Baker R, Fenyes JG, Basarab GS (eds) Synthesis and chemistry of agrochemicals IV. ACS, Washington, DC, Chap. 2, pp 15–24.

    Google Scholar 

  • Lansdell SJ, Millar NS (2000a) The influence of nicotinic receptor subunit composition upon agonist, α-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology 39:671–679.

    Article  PubMed  CAS  Google Scholar 

  • Landsdell SJ, Millar NS (2000b) Cloning and heterologous expression of Dα4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614.

    Article  Google Scholar 

  • Lansdell, SJ, Millar NS (2004) Molecular characterization of Dα6 and Dα7 nicotinic acetylcholine receptor subunits from Drosophila: Formation of a high-affinity α-bungarotoxin binding site revealed by expression of subunit chimeras. J Neurochem 90:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Tomizawa T, Casida JE (2003) Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel. J Agric Food Chem 51:2646–2652.

    Article  PubMed  CAS  Google Scholar 

  • Le Novère N, Changeux JP (1999) The ligand gated ion channel database. Nucleic Acids Res 27:340–342.

    Article  PubMed  Google Scholar 

  • Leite JF, Cascio M (2001) Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology. Mol Cell Neurosci 17:777–792.

    Article  PubMed  CAS  Google Scholar 

  • Lin NH, He Y, Anderson DJ, Wasicak JT, Kasson R, Sweeny D, Sullivan JP (1994) Synthesis and structure activity relationships of pyrrolidine-modified analogs of the potent cholinergic channel activator, ABT 418. Bioorg Med Chem Lett 4:2389–2394.

    Article  CAS  Google Scholar 

  • Lind RJ, Clough MS, Earley FGP, Wonnacott S, Reynolds SE (1999) Characterisation of multiple α-bungarotoxin binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Insect Biochem Mol Biol 29:979–988.

    Article  CAS  Google Scholar 

  • Lind RJ, Greenhow DT, Blythe J, Goodchild J, Hirst E, Dunbar SJ, Earley FGP (2002) Cyanotropanes: novel chemistry interacting at the insect nicotinic acetylcholine receptor. Proc Brighton Crop Protection Conference: Pest and Diseases 1:145–152.

    Google Scholar 

  • Liu MY, Casida JE (1993) High-affinity binding of [3H]imidacloprid in the insect acetylcholine receptor. Pestic Biochem Physiol 46:40–46.

    Article  CAS  Google Scholar 

  • Liu MY, Lanford J, Casida JE (1993) Relevance of [3H]imidacloprid binding site in house fly head acetylcholine receptor to insecticidal activity of 2-nitromethylene- and 2-nitroiminoimidazolidines. Pestic Biochem Physiol 46:200–206.

    Article  CAS  Google Scholar 

  • Littleton JT, Ganetzky B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Maienfisch P, Brandl F, Kobel W, Rindlisbacher A, Senn R (1999a) CGA 293, 343: a novel, broad-spectrum neonicotinoid insecticide. In: Yamamoto I, Casida CE (eds) Neonicotinoid insecticides and nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 177–209.

    Google Scholar 

  • Maienfisch P, Gsell L, Rindlisbacher A (1999b) Synthesis and insecticidal activity of CGA 293343 – a novel broad-spectrum insecticide. Pestic Sci 55:351–355.

    Article  CAS  Google Scholar 

  • Maienfisch P, Haettenschwiler J, Rindlisbacher A, Decock A, Wellmann H, Kayser H (2003) Azido-Neonicotinoids as candidate photoaffinity probes for insect nicotinic acetylcholine receptors. Chimia 57:710–714.

    Article  CAS  Google Scholar 

  • Matsuda M, Takahashi H (1996) Mospilan (acetamiprid, NI-25) – a new systemic insecticide. Agrochem Jpn 68:20–12.

    Google Scholar 

  • Matsuda K, Buckingham SD, Freeman JC, Squire MD, Baylis HA, Sattelle DB (1998) Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Brit J Pharmacol 123:518–524.

    Article  CAS  Google Scholar 

  • Mehlhorn H, Mencke N, Hansen O (1999) Effects of imidacloprid on adult and larval stages of the flea Ctenocephalides felis after in vivo and in vitro application: a light- and electonmicroscopy study. Parasitol Res 85:625–637.

    Article  PubMed  CAS  Google Scholar 

  • Mencke N, Jeschke P (2002) Therapy and prevention of parasitic insects in veterinary medicine using imidacloprid. Curr Topics Med Chem 2:701–715.

    Article  CAS  Google Scholar 

  • Menn JJ, Henrick CA (1985) New chemicals for insect-control. Beltsville Symposia in Agricultural Research 8, (Agric. Chem. Future), pp 247–265.

    Google Scholar 

  • Mertz FP, Yao RC (1990) Saccharopolyspora spinosa sp. Nov. Isolated from soil collected in a sugar mill rum still. Int J Syst Bacteriol 40:34–39.

    Article  Google Scholar 

  • Methfessel C (1992) Action of imidacloprid on the nicotinic acetylcholine receptor in rat muscle. Pflanzenschutz-Nachrichten Bayer 45:369–380.

    CAS  Google Scholar 

  • Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874.

    Article  PubMed  CAS  Google Scholar 

  • Minamida I, Iwanaga K, Tabuchi T, Aoki I, Fusaka T, Ishizuka H, Okauchi T (1993) Synthesis and insecticidal activity of acylic nitroethene compounds containing a heteroarylmethyl-amino group. Nihon Noyaku Gakkaishi (J Pestic Sci) 18:41–48.

    Google Scholar 

  • Mitsudera H, Konishi K (1991) Studies on nereistoxin and its related compounds. 2. Synthesis and insecticidal activity of 5-dimethylamino-1, 3-thianes. J Pestic Sci 16:397–404.

    CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N (1999) Nicotinic acetylcholine receptor at 4.6-Ã… resolution: transverse tunnels in the channel wall. J Mol Biol 288:765–786.

    Article  PubMed  CAS  Google Scholar 

  • Moaddel R, Cloix JF, Ertem G, Wainer IW (2002) Multiple receptor liquid chromatographic stationary phases: the co-immobilization of nicotinic receptors, gamma-amino-butyric acid receptors, and N-methyl D-aspartate receptors. Pharm Res 19:104–7.

    Article  PubMed  CAS  Google Scholar 

  • Moaddel R, Wainer IW (2003) Immobilized nicotinic receptor stationary phases: going with the flow in high-throughput screening and pharmacological studies. J Pharm Biomed Anal 30:1715–1724.

    Article  PubMed  CAS  Google Scholar 

  • Moaddel R, Jozwiak K, Whittington K, Wainer IW (2005) conformational mobility of immobilized 32, α3β4, α4β2, and α4β4 nicotinic acetylcholine receptors. Anal Chem 77:895–901.

    Article  PubMed  CAS  Google Scholar 

  • Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K, Kagabu S (1992) 1-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Biosci Biotechnol Biochem 56:364–365.

    Article  CAS  Google Scholar 

  • Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K, Kagabu S (1993) Structural modification of the 6-chloropyridyl moiety in the imidacloprid skeleton: introduction of a five-membered heteroaromatic ring and the resulting insecticidal activity. Biosci Biotech Biochem 57:127–128.

    Article  CAS  Google Scholar 

  • Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Jatisatienr Ch, Lie W, Ung AT, Skelton BW, White AH (2004) Phytochemical and larvicidal studies on Stemona curtisii: structure of a new pyrido[1, 2-a]azepine Stemona alkaloid. J Nat Prod 67:675–677.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A (1998) Molecular similarity and structure-activity relationship of neonicotinoid insecticides. J Pestic Sci 23:336–343.

    CAS  Google Scholar 

  • Nakayama A, Sukekawa M (1998) Quantitative correlation between molecular similarity and receptor binding activity of neonicotinoid insecticides. Pestic Sci 52:104–110.

    Article  CAS  Google Scholar 

  • Narahashi T (1973) Mode of action of nereistoxin on excitable tissues. In: Martin DF, Padilla GM (eds) Marine pharmacognosy. Actions of marine biotoxins at the cellular level. Academic, New York, pp 107–126.

    Google Scholar 

  • Nauen R (1995) Behavior modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44:145–153.

    Article  CAS  Google Scholar 

  • Nauen R, Strobel J, Tietjen K, Otsu Y, Erdelen C, Elbert A (1996) Aphicidal activity of imidacloprid against a tobacco feeding strain of Myzus persicae (Homoptera: Aphididae) from Japan closely related to Myzus nicotianae and highly resistant to carbamates and organophosphates. Bull Entomol Res 86:165–171.

    Article  CAS  Google Scholar 

  • Nauen R, Ebbinghaus U, Tietjen K (1999a) Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic Sci 55:608–610.

    Article  CAS  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher A, Elbert A, Jeschke P, Tietjen K (2001) Acetylcholine receptors as sites for developing neonicotinoid insecticides. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin Heidelberg New York, pp 77–105.

    Google Scholar 

  • Nauen R, Stumpf N, Elbert A (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manage Sci 58:868–875.

    Article  CAS  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pest Biochem Physiol 76:55–69.

    Article  CAS  Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Ins Biochem Physiol 58:200–215.

    Article  CAS  Google Scholar 

  • Neamati N, Barchi JJ Jr (2002) New paradigms in drug design and discovery. Curr Topics Med Chem (Hilversum, Netherlands) 2:211–227.

    Article  CAS  Google Scholar 

  • Nishimura K, Kanda Y, Okazawa A, Ueno T (1994) Relationship between insecticidal and neurophysiological activities of imidacloprid and related compounds. Pestic Biochem Physiol 50:51–59.

    Article  CAS  Google Scholar 

  • Nishimura K, Tanaka M, Iwaya K, Kagabu S (1998) Relationship between insecticidal and nerve-excitatory activities of imidacloprid and its alkylated congeners at the imidazoline NH site. Pestic Biochem Physiol 62:172–178.

    Article  CAS  Google Scholar 

  • Nishiwaki H, Nakagawa Y, Kuwamura M, Sato K, Akamatsu M, Matsuda K, Komai K, Miyagawa H (2003) Correlations of the electrophysiological activity of neonicotinoids with their binding and insecticidal activities. Pest Manage Sci 59:1023–1030.

    Article  CAS  Google Scholar 

  • Nitta S (1934) Ãœber Nereistoxin, einen giftigen Bestandteil von Lumbriconereis heteropoda Marenz (Eunicidae). Yakugaku Zasshi 54:648–652.

    CAS  Google Scholar 

  • Okaichi T, Hashimoto Y (1962) The structure of nereistoxin. Agric Biol Chem (Tokyo) 26:224–227.

    CAS  Google Scholar 

  • Olsen ER, Dively GP, Nelson JO (2000) Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J Econ Entomol 93:447–458.

    Article  Google Scholar 

  • Ohkawara Y, Akayama A, Matsuda K, Andersch W (2002) Clothianidin: a novel broad spectrum neonicotinoid insecticide. Proc Brighton Crop Protection Conference: Pest and Diseases 1:51–58.

    Google Scholar 

  • Okazawa A, Akamatsu M, Ohoka A, Nishiwaki H, Cho WJ, Nakagawa Y, Nishimura K, Ueno T (1998) Prediction of the binding mode of imidacloprid and related compounds to housefly head acetylcholine receptors using three-dimensional QSAR analysis. Pest Sci 54:134–144.

    Article  CAS  Google Scholar 

  • Okazawa A, Akamatsu M, Nishiwaki H, Nakagawa Y, Miyagawa H, Nishimura K, Ueno T (2000) Three-dimensional quantitative structure-activity relationship analysis of acyclic and cyclic chloronicotinyl insecticides. Pest Manage Sci 56:509–515.

    Article  CAS  Google Scholar 

  • Pilli RA, de Oliveira F, da Conceicao M (2000) Recent progress in the chemistry of the Stemona alkaloids. Nat Prod Rep 17:117–127.

    Article  PubMed  CAS  Google Scholar 

  • Qian C, Li T, Shen TY, Libertine-Garahan L, Eckman J, Biftu T, Ip S (1993) Epibatidin is a nicotinic analgesic. Eur J Pharmacol 250:R13–R14.

    Article  PubMed  CAS  Google Scholar 

  • Rauch N, Nauen R (2003) Biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54:165–176.

    Article  PubMed  CAS  Google Scholar 

  • Sakai M (1964) Studies on the insecticidal action of nereistoxin, 4-N, N-dimethylamino-1, 2-dithiolane. I. Insecticidal properties. Jpn J Appl Entomol Zool 8:324–333.

    Google Scholar 

  • Sakai M (1969) Nereistoxin and cartap, their mode of action as insecticides. Rev Plant Prot Res 2:17–28.

    Google Scholar 

  • Sakai M, Sato Y (1972) Metabolic conversion of the nereistoxin-related compounds into nereistoxin as a factor of their insecticidal action. In: Tahori AS (ed) Pesticide chemistry, vol. 1, Insecticides. Gordon and Breach, New York, pp 455–467.

    Google Scholar 

  • Sakai M (1984) Bancol (bensultap). Pestic Inf 45:21–24.

    CAS  Google Scholar 

  • Salgado VL, Watson GB, Sheets JJ (1997) Studies on the mode of action of spinosad, the active ingredient in Tracer insect control. Proc Beltwide Cotton Conference, pp 1082–1086.

    Google Scholar 

  • Salgado VL (1997) The modes of action of spinosad and other insect control products. Down to Earth 52:35–43.

    Google Scholar 

  • Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879.

    Article  PubMed  CAS  Google Scholar 

  • Samaritoni JG, Demeter DA, Gifford JM, Watson GB, Kempe MS, Bruce TJ (2003) Dihydropiperazine Neonicotinoid Compounds, Synthesis and Insecticidal Activity. J Agric Food Chem 51:3035–3042.

    Article  PubMed  CAS  Google Scholar 

  • Samson AO, Scherf T, Eisenstein M, Chill JH, Anglister J (2002) The mechanism for acetylcholine receptor inhibition by α-neurotoxins and species-specific resistance to α-bungarotoxin revealed by NMR. Neuron 35:319–332.

    Article  PubMed  CAS  Google Scholar 

  • Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. BioEssay 27:366–376.

    Article  CAS  Google Scholar 

  • Schmeltz I (1971) Nicotine and other tobacco alkaloids. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 99–136.

    Google Scholar 

  • Schroeder ME, Flattum RF (1984) The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic Biochem Physiol 22:148–160.

    Article  CAS  Google Scholar 

  • Schulz R, Bertrand S, Chamaon K, Smalla KH, Gundelfinger ED, Bertrand D (2000) Neuronal nicotinic acetylcholine receptors from Drosophila: two different types of α-subunits coassemble within the same receptor complex. J Neurochem 74:2537–2546.

    Article  PubMed  CAS  Google Scholar 

  • Seger CH, Mereiter K, Kaltenegger E, Pacher T, Greger H, Hofer O (2004) Two pyrrolo[1, 2-a]azepine type alkaloids from Stemona collinsae craib: structure elucidation, relationship to asparagamine A, and a new biogenetic concept of their formation. Chem Biodiversity 1:265–279.

    Article  CAS  Google Scholar 

  • Senn R, Hofer D, Hoppe T, Angst M, Wyss P et al (1998) CGA 293343: a novel broad-spectrum insecticide supporting sustainable agriculture worldwide. In: Proc Brighton Crop Protection Conference: Pest and Diseases, vol. 1, pp 27–36.

    Google Scholar 

  • Sheridan RP, Nilakantan R, Dixon JS, Venkataraghavan R (1986) The ensemble approach to distance geometry: application to the nicotinic pharmacophore. J Med Chem 29:899–906.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura M, Okuda H, Matsuda K, Komai K, Akamatsu M, Sattelle DB (2002) Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Brit J Pharmacol 137:162–169.

    Article  CAS  Google Scholar 

  • Shimomura M, Yokata M, Okumura M, Matsuda K, Akamatsu M, Sattelle DB, Komai K (2003) Combinatorial mutations in loops D and F strongly influence responses of the α7 nicotinic acetylcholine receptor imidacloprid. Brain Res 991:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura M, Matsuda K, Akamatsu M, Sattelle DB, Komai K (2004) Responses to neonicotinoids of chicken α7 nicotinic acetylcholine receptors: effects of mutations of isoleucine 191 in loop F to aromatic residues. J Pestic Sci 29:364–368.

    Article  CAS  Google Scholar 

  • Schroeder ME, Flattum RF (1984) the mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic Biochem Physiol 22:148–160.

    Article  CAS  Google Scholar 

  • Sine SM (2002) The nicotinic receptor ligand binding domain. J Neurobiol 53:431–446.

    Article  PubMed  CAS  Google Scholar 

  • Sine SM, Wang HL, Gao F (2004) Toward atomic-scale understanding of ligand recognition in the muscle nicotinic receptor. Curr Med Chem 11:559–567.

    Article  PubMed  CAS  Google Scholar 

  • Smit AB, Sayed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WPM (2001) A glial-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Smit AB, Sixma TK (2001) Cloning, characterization and crystal structure of water-soluble ligand-binding proteins from molluscs, and their use for screening ligands of ligand-gated ion channels. PCT International Application WO 2001058951 A2 (Stichting voor de Technische Wetenschappen, Neth.).

    Google Scholar 

  • Soloway SB, Henry AC, Kollmeyer WD, Padgett WM, Powell JE, Roman SA, Tiemann CH, Corey RA, Horne CA (1978) Nitromethylene heterocycles as insecticides. In: Shankland DL, Hollingworth RM, Smyth T Jr (eds) Pesticide and venom neurotoxicology. Plenum Press, New York, pp 153–158.

    Google Scholar 

  • Soloway SB, Henry AC, Kollmeyer WD, Padgett WM, Powell JE, Roman SA, Tiemann CH, Corey RA, Horne CA (1979) Nitromethylene insecticides. In: Geissbühler H, Brooks GT, Kearney PC (eds) Advances in pesticide science, Part 2. Pergamon Press, Oxford, pp 206–217.

    Google Scholar 

  • Sone S, Nagata K, Tsuboi S, Shono T (1994) Toxic symptoms and neural effects of a new class of insecticide, imidacloprid, on the American cockroach, Periplaneta americana (L.). J Pestic Sci 19:69–72.

    CAS  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manage Sci 57:896–905.

    Article  CAS  Google Scholar 

  • Sparks TC, Anzeveno PB, Martynow JG, Gifford JM, Hertlein MB, Worden TV, Kirst HA (2000) The application of artificial neuronal networks to the identification of new spinosoids with improved biological activity toward larvae of Heliothis virescens. Pestic Biochem Physiol 67:187–197.

    Article  CAS  Google Scholar 

  • Stevens PF, Berg W (1977) Effectiveness of various formulations of thiocyclam hydrogen oxalate against various major insect pests of irrigated rice and of sugar-cane. Brighton Crop Protection Conference: Pests and Diseases 2:555–563.

    Google Scholar 

  • Sukekawa M, Nakayama A (1999) Application of molecular similarity analysis in 3D-QSAR of neonicotinoid insecticides. J Pestic Sci 24:38–43.

    CAS  Google Scholar 

  • Tang Z (2002) Structure-activity and pharmacophore of neonicotinoid insecticides Shanghai Institute of Entomology. Xiandai Nongyao 1:1–6.

    CAS  Google Scholar 

  • Takahashi H, Mitsui J, Takakusa N, Matsuda M, Yoneda H, Suzuki J, Ishimitsu K, Kishimoto T (1992) NI-25, a new type of systemic and broad spectrum insecticide. Brighton Crop Protection Conference: Pests and Diseases 1:89–96.

    Google Scholar 

  • Thompson GD, Dutton R, Sparks TC (2000) Spinosad—a case study: an example from a natural product discovery programme. Pest Manage Sci 56:696–702.

    Article  CAS  Google Scholar 

  • Tomizawa M, Yamamoto I (1993) Binding of neonicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. Nihon Noyaku Gakkaishi. J Pestic Sci 17:231–236.

    Google Scholar 

  • Tomizawa M, Latli B, Casida JE (1996) Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. J Neurochem 67:1669–1676.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (1997) [125I]Azidonicotinoid photoaffinity labeling of insecticide-binding subunit of Drosophila nicotinic acetylcholine receptor. Neurosci Lett 237:61–64.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (1999) Minor structural changes in neonicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors. Brit J Pharmacol 127:115–122.

    Article  CAS  Google Scholar 

  • Tomizawa M, Latli B, Casida JE (1999) Structure and function of insect nicotinic acetylcholine receptors studied with nicotinoid insecticide affinity probes. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 271–292.

    Google Scholar 

  • Tomizawa M, Lee DL, Casida JE (2000) Neonicotinoid Insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agric Food Chem 48:6016–6024.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M (2000) Insect nicotinic acetylcholine receptors: mode of action of insecticide and functional architecture of the receptor. Jpn J Appl Entomol Zool 44:1–15.

    Article  CAS  Google Scholar 

  • Tomizawa M, Wen Z, Chin HL, Morimoto H, Kayser H, Casida JE (2001) Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel [3H]azidoneonicotinoid. J. Neurochem. 78:1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manage Sci 57:914–922.

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Zhang N, Durkin KA, Olmstead MM, Casida JE (2003) The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor: an anomaly for the nicotinoid cation-Ï€ interaction model. Biochemistry 42:7819–7827.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2004) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268.

    Article  CAS  Google Scholar 

  • Toyoshima C, Unwin N (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J Cell Biol 111:2623–2635.

    Article  PubMed  CAS  Google Scholar 

  • Tønder JE, Hansen JB, Begtrup M, Petersson I, Rimvall K, Christensen B, Ehrbar U, Olessen PH (1999) Improving the nicotinic pharmacophore with a series of (isoxazole) methylene-1-azacyclic compounds. Synthesis, structure-activity relationship, and molecular modeling. J Med Chem 42:4970–4980.

    Article  PubMed  CAS  Google Scholar 

  • Tønder JE, Olesen PH, Hansen JB, Begtrup M, Petersson I (2001) An improved nicotinic pharmacophore and a stereoselective CoMFA-model for nicotinic agonists acting at the central nicotinic acetylcholine receptors labeled by [3H]-N-methylcarbamoylcholine. J Comp Aid Mol Des 15:247–258.

    Article  Google Scholar 

  • Tønder JE, Olesen PH (2001) Agonists at the α4/β2 nicotinic acetylcholine receptors: structure-activity relationships and molecular modelling. Curr Med Chem 8:651–674.

    PubMed  Google Scholar 

  • Tsao R, Eto M (1989) chemical and photochemical transformation of the insecticide cartap hydrochloride into nereistoxin. J Pestic Sci 14:47–51.

    CAS  Google Scholar 

  • Uneme H, Iwanaga K, Higuchi N, Kando Y, Okauchi T, Akayama A, Minamida I (1999) Syntheses and insecticidal activity of nitroguanidine derivatives. Pestic Sci 55:202–205.

    Article  CAS  Google Scholar 

  • Unwin N (1995) Acetylcholin receptor channel imaged in the open state. Nature 373:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Unwin N, Miyazawa A, Li J, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J Mol Biol 319:1165–1176.

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 A resolution. J Mol Biol 346:967–989.

    Article  PubMed  CAS  Google Scholar 

  • Ujváry I (1999) Nicotine and other insecticidal alkaloids. In: Yamamoto I, Casida JE (eds) Neonicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 29–69.

    Google Scholar 

  • Verpoorte R (1998) Exploration of nature's chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238.

    Article  CAS  Google Scholar 

  • Waldron C, Matsushima P, Rosteck PR Jr, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Cloning and analysis of spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 94:1–13.

    Google Scholar 

  • Weichel L, Nauen R (2003) Monitoring of insecticide resistance in damson hop aphids, Phorodon humuli Schrank (Hemiptera: Aphididae) from German hop gardens. Pest Manage Sci 59:991–998.

    Article  CAS  Google Scholar 

  • Wen ZM, Scott JG (1997) Cross-resistance to imidacloprid strains of German cockroach (Blattella germanica) and housfly (Musca domestica). Pestic Sci 49:367–371.

    Article  CAS  Google Scholar 

  • Wiesner P, Kayser H (2000) Characterization of nicotinic acetylcholine receptors from insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action. J Biochem Mol Toxicol 14:221–230.

    Article  PubMed  CAS  Google Scholar 

  • Wollweber D, Tietjen K (1999) Chloronicotinyl insecticides: a success of the new chemistry. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 109–125.

    Google Scholar 

  • Yaguchi Y, Sato T (2001) Thiacloprid (Bariard) a novel neonicotinoid insecticide for foliar application. Agrochem Jpn 79:14–16.

    CAS  Google Scholar 

  • Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids. J Pest Sci 20:33–40.

    CAS  Google Scholar 

  • Yamamoto I, Tomizawa M, Saito T, Miyamoto T, Walcott EC, Sumikawa K (1998) Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch Insect Biochem Phys 37:24–32.

    Article  CAS  Google Scholar 

  • Yamamoto I (1999) Nicotine to neonicotinoids: 1962 to 1997. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 3–27.

    Google Scholar 

  • Yamamoto I, Casida JE (1999) (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, 300 pp.

    Google Scholar 

  • Zewen L, Zhaojun H, Yinchang W, Lingchun Z, Hongwei Z, Chengjun L (2003) Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Manage Sci 59:1355–1359.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiao Y, Kellar KJ, Wainer IW (1998) Immobilized nicotinic receptor stationary phase for online liquid chromatographic determination of drug-receptor affinities. Anal Biochem 264:22–25.

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Kayser H, Maienfisch P, Casida JE (2000) Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of [3H]imidacloprid binding site. J Neurochem 75:1294–1303.

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Tomizawa M, Casida JE (2002) Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha 4 beta 2 and Drosophila nicotinic receptors. J Med Chem 45:2832–2840.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Tomizawa M, Casida JE (2004a) α-Nitro ketone as an electrophile and nucleophile: synthesis of 3-substituted 2-nitromethylenetetrahydrothiophene and -tetrahydrofuran as Drosophila nicotinic receptor probes. J Org Chem 69:876–881.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Tomizawa M, Casida JE (2004b) Drosophila nicotinic receptors: evidence for imidacloprid insecticide and α-bungarotoxin binding to distinct sites. Neuroscience Lett 371:56–59.

    Article  CAS  Google Scholar 

  • Zhao JY, Liu W, Brown JM, Knowles CO (1995) Insecticide resistance in field and laboratory strains of Western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 88:1164–1170.

    CAS  Google Scholar 

  • Zhao JZ, Bishop BA, Graphius EJ (2000) Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 93:1508–1514.

    Article  PubMed  CAS  Google Scholar 

  • Zwaart R, Oortigiesen M, Vijverberg HPM (1994) Nitromethylene heterocycles: selective agonists of nicotinic receptors in locust neurons compared to mouse NIE-115 and BC3H1 cells. Pestic Biochem Physiol 48:202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeschke, P. (2007). Nicotinic Acetylcholine Receptors as a Continuous Source for Rational Insecticides. In: Ishaaya, I., Horowitz, A.R., Nauen, R. (eds) Insecticides Design Using Advanced Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46907-0_7

Download citation

Publish with us

Policies and ethics