Skip to main content

Adhesive Events in Retinal Development and Function: The Role of Integrin Receptors

  • Chapter
Vertebrate Eye Development

Summary

Cells in the developing retina contact a vast array of molecular cues in their microenvironment that are thought to guide their development. Many of these cues are embedded in the surface of neighboring cells or deposited within the extracellular matrix (ECM). Evidence has accumulated that cell-cell and cell-ECM interactions are essential in many phases of neural development, including neuroblast migration, determination of cell fate, axon outgrowth and synapse formation. In this chapter, we examine the developmental and functional roles fulfilled by integrins, a family of receptors for ECM molecules and cell adhesion molecules (CAMs). We have approached this problem by addressing a series of three questions: (1) which integrins are expressed in developing retina? (2) when and where are they expressed? and, (3) what functions do they carry out? Integrins have previously been implicated in axon extension, but new evidence suggests that they are also involved in earlier developmental events in preaxonal neuroblasts. High levels of expression of at least eight integrin subunits have been documented in these young retinal cells, and integrins containing the β1 subunit have been implicated in migration of adolescent retinal ganglion cells. Integrin expression persists through adulthood, both in the retina and in the neighboring layer of the retinal pigment epithelium (RPE). The integrin αvβ5 has been shown to reside on the apical surface of the RPE and has been implicated in the phagocytosis of shed photoreceptor outer segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DH, Johnson LV, Hageman GS (1995) Vitronectin receptor expression and distribution at the photoreceptor-retinal pigment epithelial interface. J Comp Neurol 360: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Bossy B, Bossy-Wetzel E, Reichardt LF (1991) Characterization of the integrin α8 subunit: a new integrin 31-associated subunit which is prominently expressed on axons and on cells in contact with basal laminae in chick embryos. EMBO J 10: 2375–2385

    PubMed  CAS  Google Scholar 

  • Boyle D, Tien L, Shepherd V, McLaughlin B (1991) A mannose receptor is involved in retinal phagocytosis. Invest Ophthalmol Visual Sci 32: 1464–1470

    CAS  Google Scholar 

  • Bradshaw AD, McNagny KM, Gervin DB, Cann GM, Graff T, Clegg DO (1995) Integrin α2 31 mediates interactions between developing embryonic retinal cells and collagen. Development 121: 3593–3602

    PubMed  CAS  Google Scholar 

  • Brem RB, Robbins SG, Wilson DJ, O’Rourke LM, Mixon RN, Robertson JE, Planck SR, Rosenbaum JT (1994) Immunolocalization of integrins in the human retina. Invest Ophthalmol Visual Sci 35: 3466–3474

    CAS  Google Scholar 

  • Bronner-Fraser M (1985) Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol 101: 610–617

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M (1986) An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 117: 528–536

    Article  PubMed  CAS  Google Scholar 

  • Cann GM, Bradshaw AD, Gervin DB, Hunter AW, Clegg DO (1996) Widespread expression of β1 integrins in the developing chick retina: evidence for a role in migration of retinal ganglion cells. Dev Biol 180: 82–96

    Article  PubMed  CAS  Google Scholar 

  • Carroll JM, Romero MR, Watt FM (1995) Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83:957–68

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Burne JF, Winter J, Burne J (1986) Retinal ganglion cells lose their response to laminin with maturation. Nature 322: 465–467

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Nurcombe V, Jeffrey P, Edgar D (1989) Developmental loss of functional laminin receptors on retinal ganglion cells is regulated by their target tissue, the optic tectum. Development 107: 381–387

    PubMed  CAS  Google Scholar 

  • Danen EH, Lafrenie RM, Miyamoto S, Yamada KM (1998) Integrin signaling: cytoskeletal complexes, MAP kinase activation, and regulation of gene expression. Cell Adhes Corn 6: 217–224

    Article  CAS  Google Scholar 

  • de Curtis I, Reichardt LF (1993) Function and spatial distribution in developing chick retina of the laminin receptor α631 and its isoforms. Development 118:377–388

    PubMed  Google Scholar 

  • de Curtis I, Quaranta V, Tamura RN, Reichardt LF (1991) Laminin receptors in the retina: sequence analysis of the chick integrin α6 subunit. J Cell Biol 113: 405–416

    Article  PubMed  Google Scholar 

  • Duband J-L, Belkin AM, Syfrig J, Thiery JP, Koteliansky VE (1992) Expression of αl integrin, a laminin-collagen receptor during myogenesis and neurogenesis in the avian embryo. Development 116: 585–600

    PubMed  CAS  Google Scholar 

  • Duguid IGM, Boyd AW, Mandel TE (1992) Adhesion molecules are expressed in the human retina and choroid. Curr Eye Res Supp 11: 153–159

    Article  Google Scholar 

  • Dutting D, Gierer A, Hansmann G (1983) Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina. Dev Brain Res 10: 21–32

    Article  Google Scholar 

  • Einheber S, Schnapp LM, Salzer JL, Cappiello ZB, Milner TA (1996) Regional and ultrastructural distribution of the alpha 8 integrin subunit in developing and adult rat brain suggests a role in synaptic function. J Comp Neurol 370: 105–134

    Article  PubMed  CAS  Google Scholar 

  • Elner SG, Elner VM (1996) The integrin superfamily and the eye. Invest Ophthalmol Visual Sci 37:696–701

    CAS  Google Scholar 

  • Fassler R, Meyer M (1995) Consequences of lack of 31 integrin gene expression in mice. Genes Dev 9: 1896–1908

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM, Perez-Miguelsanz J, Ryder EF, Cepko CL (1994) Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev Biol 166: 666–682

    Article  PubMed  CAS  Google Scholar 

  • Finnemann SC, Bonilha VL, Marmorstein AD, Boulan ER (1997) Phagocytosis of rod outer segments by retinal pigment epithelial cells requires αv5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 94: 12932–12937

    Article  PubMed  CAS  Google Scholar 

  • Galileo DS, Majors J, Horwitz AF, Sanes JR (1992) Retovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo. Neuron 9: 1117–1131

    Article  PubMed  CAS  Google Scholar 

  • Georges-Labouesse E, Mark M, Messaddeq N, Gansmuler A (1998) Esential role of α6 integrins in cortical and retinal lamination. Curr Biol 8: 983–986

    Article  PubMed  CAS  Google Scholar 

  • Gervin DB, Cann GM, Clegg DO (1996) Temporal and spatial regulation of integrin vitronectin receptor mRNAs in the embryonic chick retina. Invest Ophthalmol Visual Sci 37: 1084–1096

    CAS  Google Scholar 

  • Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL (1998) Integrin-mediated short-term memory in Drosophila. Nature 391: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Hall DE, Neugebauer KM, Reichardt LF (1987) Embryonic neural retinal cell response to extracellular matrix proteins: developmental changes and effects of the cell substratum attachment antibody (CSAT). J Cell Biol 104: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Hall MO, Abrams TA, Burgess BL, Ershov AV (1997) Further studies on the phagocytosis of photoreceptor outer segments by rat retinal pigment epithelial cells. In: LaVail MM, Hollyfield JG, Anderson RE (eds) Degenerative retinal diseases. Plenum Press, New York, pp 385–397

    Chapter  Google Scholar 

  • Hall MO, Burgess, BL, Abrams TA (1998) Molecular studies of a candidate receptor for outer segment phagocytosis. Exp Eye Res 67: S163

    Article  Google Scholar 

  • Hemler ME (1998) Integrin associated proteins. Curr Op in Cell Biol 10: 578–585

    Article  CAS  Google Scholar 

  • Hotchin NA, Gandarillas A, Watt FM (1995) Regulation of cell surface beta 1 integrin levels during keratinocyte terminal differentiation. J Cell Biol 128: 1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (1996) Targeted mutations in cell adhesion genes: what have we learned from them? Dev Biol 180: 402–412

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322

    Article  PubMed  CAS  Google Scholar 

  • Jacques TS, Relvas JB, Nishimura S, Pytela R, Edwards GM, Streuli CH, Ffrench-Constant C (1998) Neural precursor cell chain migration and division are regulated through different betal integrins. Development 125:3167–3177

    PubMed  CAS  Google Scholar 

  • Jaffredo T, Horwitz AF, Buck CA, Rong PM, Dieterlen-Lievre F (1988) Myoblast migration specifically inhibited in the chick embryo by grafted CSAT hybridoma cells secreting an anti-integrin antibody. Development 103:431–446

    PubMed  CAS  Google Scholar 

  • Jones LS (1996) Integrins: possible functions in the adult CNS. Trends Neurosci 19: 68–72

    Article  PubMed  CAS  Google Scholar 

  • Kil SH, Krull CE, Cann GM, Clegg DO, Bronner-Fraser M (1998) The integrin α4 subunit is important for neural crest cell migration. Dev Biol 202: 29–42

    Article  PubMed  CAS  Google Scholar 

  • Leonard J, Sakaguchi DS (1995) Effects of anti-β1 integrin antibodies on the histogenesis and differentiation of the Xenopus retina in vivo. Soc Neurosci Abstr 611.2

    Google Scholar 

  • Lilienbaum A, Reszka AA, Horwitz AF, Holt CE (1995) Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo. Mol Cell Neurosci 6: 139–152

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Clegg DO (1998) Integrin αv 5 participates in the phagocytosis of photoreceptor rod outer segments by cultured human retinal pigment epithelium. Invest Ophthalmol Visual Sci 39: 1703–1712

    CAS  Google Scholar 

  • Longley RL, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171: 415–433

    Article  PubMed  CAS  Google Scholar 

  • Miceli MV, Newsome DA, Tate DJ (1997) Vitronectin is responsible for serum-stimulated uptake of rod outer segments by cultured retinal pigment epithelial cells. Invest Ophthalmol Visual Sci 38: 1588–1597

    CAS  Google Scholar 

  • Milner R, Edwards G, Streuli C, Ffrench-Constant C (1996) A role in migration for the alpha v beta 1 integrin expressed on oligodendrocyte precursors. J Neurosci 16: 7240–7252

    PubMed  CAS  Google Scholar 

  • Morris VB, Cowan R (1984) A growth curve of cell numbers in the neural retina of embryonic chicks. Cell Tissue Kinet 17: 199–208

    PubMed  CAS  Google Scholar 

  • Muller U, Bossy B, Venstrom K, Reichardt LF (1995) Integrin α8β1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol Biol Cell 6: 433–448

    PubMed  CAS  Google Scholar 

  • Neugebauer KM, Reichardt LF (1991) Cell surface regulation of β1-integrin activity on developing retinal neurons. Nature 350: 68–71

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer, KM, Emmet CJ, Venstrom KA, Reichardt LF (1991) Vitronectin and thrombospondin promote retinal neurite outgrowth: developmental regulation and role of integrins. Neuron 6: 345–358

    Article  PubMed  CAS  Google Scholar 

  • Nishimura SL, Boylen KP, Einheber S, Milner TA, Ramos DM, Pytela R (1998) Synaptic and glial localization fo the integrin alpha v beta 8 in mouse and rat brain. Brain Res 791: 271–282

    Article  PubMed  CAS  Google Scholar 

  • Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit expression is regionally differentiated in adult brain. J Neurosci 19: 1541–1556

    PubMed  CAS  Google Scholar 

  • Prada C, Puelles L, Genis-Galvez JM (1981) A Golgi study on the early sequence of differentiation of ganglion cells in the chick embryo retina. Anat Embryol 161: 305–317

    Article  PubMed  CAS  Google Scholar 

  • Reese BE, Harvey AR, Tan SS (1995) Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc Natl Acad Sci USA 92: 2494–2498

    Article  PubMed  CAS  Google Scholar 

  • Reichardt LF, Tomaselli KJ (1991) Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci 14: 531–570

    Article  PubMed  CAS  Google Scholar 

  • Ryeom SW, Sparrow JR, Silverstein RL (1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 109: 387–395

    PubMed  CAS  Google Scholar 

  • Schwartz MA, Schaller MD, Ginsberg MH (1995) Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11: 549–599

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AM, Onken, MD, Rosen GD, Noakes PG, Dean DC (1994) Expanding roles of α4 integrin and its ligands in development. Cell Adhes Comm 2: 27–43

    Article  CAS  Google Scholar 

  • Skeith A, Dunlap L, Galileo DS, Linser P (1999) Inhibition of 1 integrin expression reduces clone size during early retinogenesis. Dev Brain Res 116: 123–126

    Article  CAS  Google Scholar 

  • Sonnenberg A (1993) Integrins and their ligands. Curr Top Microbiol Immunol 184: 7–35

    Article  PubMed  CAS  Google Scholar 

  • Stevens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH (1995) Deletion of beta 1 integrins in mice results in inner cell mass failure and periimplantation lethality. Genes Dev 9: 1883–1895

    Article  Google Scholar 

  • Svennevik E, Linser PJ (1992) The inhibitory effects of integrin antibodies and the RGD tripeptide on early eye development. Invest Ophthalmol Visual Sci 35: 1774–1784

    Google Scholar 

  • Varnum-Finney B, Venstrom K, Muller U, Kypta R, Backus C, Chiquet M, Reichardt L (1995) The integrin receptor α8β mediates interactions of embryonic chick motor and sensory neurons with tenascin-C. Neuron 14: 1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development 121: 549–560

    PubMed  CAS  Google Scholar 

  • Zhang Z, Galileo DS (1998) Retroviral transfer of antisense integrin alpha 6 or alpha 8 sequences results in laminar redistribution or clonal cell death in developing brain. J Neurosci 18: 6928–6938

    PubMed  CAS  Google Scholar 

  • Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK (1996) Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 133: 391–403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clegg, D.O. et al. (2000). Adhesive Events in Retinal Development and Function: The Role of Integrin Receptors. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics