Skip to main content

Molecular Control of Cell Diversification in the Vertebrate Retina

  • Chapter
Vertebrate Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 31))

Abstract

Any discussion of the molecular mechanisms that are responsible for the generation of cell diversity in the retina requires some consideration of what constitutes neuronal diversity. Traditionally, retinal neurobiologists have classified retinal cell types on the basis of their morphology, in terms both of their laminar position and their dendritic structure, as well as by their electrophysiological properties. While it is generally accepted that there are five basic classes of retinal neurons, photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells, there is a considerable amount of debate as to how these basic classes are subdivided. While there are critical differences in gene expression between the classes of cone photoreceptors that determine the wavelength of light to which they respond, there is little difference in their morphology; by contrast, the various classes of retinal ganglion cells have critical differences in their morphology and connectivity, but as yet few molecules have been identified that are differentially expressed in subsets of ganglion cells, and it is not at all clear whether these differences correspond to the morphological subclasses of ganglion cells. Nevertheless, most retinal neurobiologists place the number of retinal cell types somewhere between “70 and the low hundreds (Cook 1996).”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler R, Hatlee M (1989) Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243: 391–393

    Article  PubMed  CAS  Google Scholar 

  • Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem 267: 21879–21885

    PubMed  CAS  Google Scholar 

  • Altshuler D, Cepko C (1992) A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114: 947–957

    PubMed  CAS  Google Scholar 

  • Altshuler D, Lo Turco JJ, Rush J, Cepko C (1993) Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119: 1317–1328

    PubMed  CAS  Google Scholar 

  • Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6: 923–936

    Article  PubMed  CAS  Google Scholar 

  • Anchan RM, Reh TA (1995) Transforming growth factor-β-3 is mitogenic for rat retinal progenitor cells in vitro. J Neurobiol 28: 133–145

    Article  PubMed  CAS  Google Scholar 

  • Austin CP, Feldman DE, Ida JA, Jr., Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121: 3637–3650

    PubMed  CAS  Google Scholar 

  • Belecky-Adams T, Tomarev S, Li HS, Ploder L, McInnes RR, Sundin O, Adler R (1997) Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol Visual Sci 38: 1293–1303

    CAS  Google Scholar 

  • Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125: 4821–4833

    PubMed  CAS  Google Scholar 

  • Bugra K, Oliver L, Jacquemin E, Laurent M, Courtois Y, Hicks D (1993) Acidic fibroblast growth factor is expressed abundantly by photoreceptors within the developing and mature rat retina. Eur J Neurosci 5: 1586–1595

    Article  PubMed  CAS  Google Scholar 

  • Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, Vidgen D, Hoover F, Goldman D, Kalnins VI, Roderick TH, Taylor BA, Hankin MH, McInnes RR (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12: 376–384

    Article  PubMed  CAS  Google Scholar 

  • Cellerino A, Pinzon-Duarte G, Carroll P, Kohler K (1998) Brain-derived neurotrophic factor modulates the development of the dopaminergic network in the rodent retina. J Neurosci 18:3351–3362

    PubMed  CAS  Google Scholar 

  • Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91: 893–903

    Article  PubMed  CAS  Google Scholar 

  • Cirillo A, Arruti C, Courtois Y, Jeanny JC (1990) Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina. Differentiation 45: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Cory S, Fraser SE (1994) BDNF in the development of the visual system of Xenopus. Neuron 12:747–761

    Article  PubMed  CAS  Google Scholar 

  • Connolly SE, Hjelmeland LM, LaVail MM (1992) Immunohistochemical localization of basic fibroblast growth factor in mature and developing retinas of normal and RCS rats. Curr Eye Res 11: 1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Consigli SA, Lyser KM, Joseph-Silverstein J (1993) The temporal and spatial expression of basic fibroblast growth factor during ocular development in the chicken. Invest Ophthalmol Visual Sci 34: 559–566

    CAS  Google Scholar 

  • Cook JE (1996) Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Visual Neurosci 13: 15–30

    Article  CAS  Google Scholar 

  • Cook B, Portera-Cailliau C, Adler R (1998) Developmental neuronal death is not a universal phenomenon among cell types in the chick embryo retina. J Comp Neurol 396: 12–19

    Article  PubMed  CAS  Google Scholar 

  • Das I, Hempstead BL, MacLeish PR, Sparrow JR (1997) Immunohistochemical analysis of the neurotrophins BDNF and NT-3 and their receptors trk B, trk C, and p75 in the developing chick retina. Visual Neurosci 14: 835–842

    Article  CAS  Google Scholar 

  • de Iongh R, McAvoy JW (1992) Distribution of acidic and basic fibroblast growth factors (FGF) in the foetal rat eye: implications for lens development. Growth Factors 6: 159–177

    Article  PubMed  Google Scholar 

  • de Iongh RU, Lovicu FJ, Chamberlain CG, McAvoy JW (1997) Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest Ophthalmol Visual Sci 38: 1688–1699

    Google Scholar 

  • de la Rosa EJ, Arribas A, Frade JM, Rodriguez-Tebar A (1994) Role of neurotrophins in the control of neural development: neurotrophin-3 promotes both neuron differentiation and survival of cultured chick retinal cells. Neuroscience 58: 347–352

    Article  PubMed  Google Scholar 

  • Desire L, Courtois Y, Jeanny JC (1998) Suppression of fibroblast growth factors 1 and 2 by antisense oligonucleotides in embryonic chick retinal cells in vitro inhibits neuronal differentiation and survival. Exp Cell Res 241:210–221

    Article  PubMed  CAS  Google Scholar 

  • Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124: 3111–3121

    PubMed  CAS  Google Scholar 

  • Dolle P, Ruberte E, Leroy P, Morriss-Kay G, Chambon P (1990) Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110:1133–1151

    PubMed  CAS  Google Scholar 

  • Dolle P, Fraulob V, Kastner P, Chambon P (1994) Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev 45: 91–104

    Article  PubMed  CAS  Google Scholar 

  • Dorsky RI, Rapaport DH, Harris WA (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14: 487–496

    Article  PubMed  CAS  Google Scholar 

  • Dorsky RI, Chang WS, Rapaport DH, Harris WA (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385: 67–70

    Article  PubMed  CAS  Google Scholar 

  • Drysdale TA, Crawford MJ (1994) Effects of localized application of retinoic acid on Xenopus laevis development. Dev Biol 162: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381: 603–606

    Article  PubMed  CAS  Google Scholar 

  • Ezzeddine ZD, Yang X, DeChiara T, Yancopoulos G, Cepko CL (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124: 1055–1067

    PubMed  CAS  Google Scholar 

  • Fayein NA, Head MW, Jeanny JC, Courtois Y, Fuhrmann G (1996) Expression of the chicken cysteine-rich fibroblast growth factor receptor (CFR) during embryogenesis and retina development. J Neurosci Res 43: 602–612

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Jan LY, Jan YN (1993) A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation. Mol Cell Biol 13: 105–113

    PubMed  CAS  Google Scholar 

  • Fekete DM, Perez-Miguelsanz J, Ryder EF, Cepko CL (1994) Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev Biol 166: 666–682

    Article  PubMed  CAS  Google Scholar 

  • Forrest D, Sjoberg M, Vennstrom B (1990) Contrasting developmental and tissue-specific expression of α and β thyroid hormone receptor genes. Embo J 9: 1519–1528

    PubMed  CAS  Google Scholar 

  • Freund C, Horsford DJ, McInnes RR (1996) Transcription factor genes and the developing eye: a genetic perspective. Hum Mol Genet 5: 1471–1488

    PubMed  CAS  Google Scholar 

  • Fuhrmann S, Kirsch M, Hofmann HD (1995) Ciliary neurotrophic factor promotes chick photoreceptor development in vitro. Development 121: 2695–2706

    PubMed  CAS  Google Scholar 

  • Fuhrmann S, Kirsch M, Heller S, Rohrer H, Hofmann HD (1998a) Differential regulation of ciliary neurotrophic factor receptor-α expression in all major neuronal cell classes during development of the chick retina. J Comp Neurol 400: 244–254

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann S, Heller S, Rohrer H, Hofmann HD (1998b) A transient role for ciliary neurotrophic factor in chick photoreceptor development. J Neurobiol 37: 672–683

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Kozak CA, Cepko CL (1997) Rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci USA 94: 3088–3093

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci USA 93: 3920–3925

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Hollyfield JG (1995) Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169: 168–184

    Article  PubMed  CAS  Google Scholar 

  • Garner AS, Menegay HJ, Boeshore KL, Xie XY, Voci JM, Johnson JE, Large TH (1996) Expression of TrkB receptor isoforms in the developing avian visual system. J Neurosci 16:1740–1752

    PubMed  CAS  Google Scholar 

  • Grondona JM, Kastner P, Gansmuller A, Decimo D, Chambon P, Mark M (1996) Retinal dysplasia and degeneration in RARβ2/RARγ2 compound mutant mice. Development 122: 2173–2188

    PubMed  CAS  Google Scholar 

  • Guillemot F, Cepko CL (1992) Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114: 743–754

    PubMed  CAS  Google Scholar 

  • Hallbook F, Backstrom A, Kullander K, Ebendal T, Carri NG (1996) Expression of neurotrophins and trk receptors in the avian retina. J Comp Neurol 364: 664–676

    Article  PubMed  CAS  Google Scholar 

  • Harris WA, Messersmith SL (1992) Two cellular inductions involved in photoreceptor determination in the Xenopus retina. Neuron 9: 357–372

    Article  PubMed  CAS  Google Scholar 

  • Heller S, Finn TP, Huber J, Nishi R, Geissen M, Puschel AW, Rohrer H (1995) Analysis of function and expression of the chick GPA receptor (GPAR α) suggests multiple roles in neuronal development. Development 121: 2681–2693

    PubMed  CAS  Google Scholar 

  • Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish-Horowicz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 7: 661–670

    Article  PubMed  CAS  Google Scholar 

  • Heuer JG, von Bartheld CS, Kinoshita Y, Evers PC, Bothwell M (1990) Alternating phases of FGF receptor and NGF receptor expression in the developing chicken nervous system. Neuron 5: 283–296

    Article  PubMed  CAS  Google Scholar 

  • Hicks D (1996) Characterization and possible roles of fibroblast growth factors in retinal photoreceptor cells. Keio J Med 45: 140–154

    Article  PubMed  CAS  Google Scholar 

  • Hirsch N, Harris WA (1997) Xenopus Pax-6 and retinal development. J Neurobiol 32: 45–61

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock PF, Macdonald RE, VanDeRyt JT, Wilson SW (1996) Antibodies against Pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. J Neurobiol 29: 399–413

    Article  PubMed  CAS  Google Scholar 

  • Hofmann HD (1988a) Ciliary neuronotrophic factor stimulates choline acetyltransferase activity in cultured chicken retina neurons. J Neurochem 51: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Hofmann HD (1988b) Development of cholinergic retinal neurons from embryonic chicken in monolayer cultures: stimulation by glial cell-derived factors. J Neurosci 8: 1361–1369

    PubMed  CAS  Google Scholar 

  • Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF (1986) Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol 97:95–110

    PubMed  CAS  Google Scholar 

  • Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Hoover F, Seleiro EA, Kielland A, Brickell PM, Glover JC (1998) Retinoid X receptor y gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors. J Comp Neurol 391:204–213

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Moody SA (1997) Three types of serotonin-containing amacrine cells in tadpole retina have distinct clonal origins. J Comp Neurol 387: 42–52

    Article  PubMed  CAS  Google Scholar 

  • Hunter DD, Murphy MD, Olsson CV, Brunken WJ (1992) S-laminin expression in adult and developing retinae: a potential cue for photoreceptor morphogenesis. Neuron 8: 399–413

    Article  PubMed  CAS  Google Scholar 

  • Hyatt GA, Schmitt EA, Fadool JM, Dowling JE (1996) Retinoic acid alters photoreceptor development in vivo. Proc Natl Acad Sci USA 93: 13298–13303

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. Embo J 13: 1799–1805

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (MASH-1) leads to upregulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9: 3136–3148

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin E, Jonet L, Oliver L, Bugra K, Laurent M, Courtois Y, Jeanny JC (1993) Developmental regulation of acidic fibroblast growth factor (aFGF) expression in bovine retina. Int J Dev Biol 37:417–423

    PubMed  CAS  Google Scholar 

  • Jasoni CL, Reh TA (1996) Temporal and spatial pattern of MASH-1 expression in the developing rat retina demonstrates progenitor cell heterogeneity. J Comp Neurol 369: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Jensen AM, Wallace VA (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124: 363–371

    PubMed  CAS  Google Scholar 

  • Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY, Jan YN, Vetter ML (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19: 981–994

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Clary DO, Lefcort FB, Reichardt LF, Karten HJ, Hallbook F (1998) Nerve growth factor receptor TrkA is expressed by horizontal and amacrine cells during chicken retinal development. J Comp Neurol 400: 408–416

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120: 2091–2102

    PubMed  CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1995a) Regulation of proliferation and photoreceptor differentiation in fetal human retinal cell cultures. Invest Ophthalmol Visual Sci 36: 1280–1289

    CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1995b) Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Development 121: 3777–3785

    PubMed  CAS  Google Scholar 

  • Kirsch M, Fuhrmann S, Wiese A, Hofmann HD (1996) CNTF exerts opposite effects on in vitro development of rat and chick photoreceptors. Neuroreport 7: 697–700

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, Lee MY, Meyer V, Wiese A, Hofmann HD (1997) Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptors and in vitro effects on target cells. J Neurochem 68: 979–990

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, Schulz-Key S, Wiese A, Fuhrmann S, Hofmann H (1998) Ciliary neurotrophic factor blocks rod photoreceptor differentiation from postmitotic precursor cells in vitro. Cell Tissue Res 291: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Kljavin IJ, Lagenaur C, Bixby JL, Reh TA (1994) Cell adhesion molecules regulating neurite growth from amacrine and rod photoreceptor cells. J Neurosci 14: 5035–5049

    PubMed  CAS  Google Scholar 

  • Kochhar DM, Jiang H, Penner JD, Johnson AT, Chandraratna RA (1998) The use of a retinoid receptor antagonist in a new model to study vitamin A-dependent developmental events. Int J Dev Biol 42: 601–608

    PubMed  CAS  Google Scholar 

  • Krauss S, Johansen T, Korzh V, Moens U, Ericson JU, Fjose A (1991) Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. Embo J 10: 3609–3619

    PubMed  CAS  Google Scholar 

  • Lake N (1994) Taurine and GABA in the rat retina during postnatal development. Visual Neurosci 11: 253–260

    Article  CAS  Google Scholar 

  • Lee JE (1997) NeuroD and neurogenesis. Dev Neurosci 19: 27–32

    Article  PubMed  Google Scholar 

  • Levine EM, Roelink H, Turner J, Reh TA (1997) Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci 17: 6277–6288

    PubMed  CAS  Google Scholar 

  • Li HS, Yang JM, Jacobson RD, Pasko D, Sundin O (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Biol 162: 181–194

    Article  PubMed  CAS  Google Scholar 

  • Libby RT, Hunter DD, Brunken WJ (1996) Developmental expression of laminin β2 in rat retina. Further support for a role in rod morphogenesis. Invest Ophthalmol Visual Sci 37:1651–1661

    CAS  Google Scholar 

  • Libby RT, Xu Y, Selfors LM, Brunken WJ, Hunter DD (1997) Identification of the cellular source of laminin β2 in adult and developing vertebrate retinae. J Comp Neurol 389: 655–667

    Article  PubMed  CAS  Google Scholar 

  • Lillien L, Cepko C (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF α. Development 115: 253–266

    PubMed  CAS  Google Scholar 

  • Lillien L (1995) Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377: 158–162

    Article  PubMed  CAS  Google Scholar 

  • Lillien L, Wancio D (1998) Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol Cell Neurosci 10: 296–308

    Article  CAS  Google Scholar 

  • Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13: 377–393

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6: 329–344

    Article  PubMed  CAS  Google Scholar 

  • Mascarelli F, Raulais D, Counis MF, Courtois Y (1987) Characterization of acidic and basic fibroblast growth factors in brain, retina and vitreous chick embryo. Biochem Biophys Res Commun 146: 478–486

    Article  PubMed  CAS  Google Scholar 

  • McCaffery P, Lee MO, Wagner MA, Sladek NE, Drager UC (1992) Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115:371–382

    PubMed  CAS  Google Scholar 

  • McCaffery P, Drager UC (1993) Retinoic acid synthesis in the developing retina. Adv Exp Med Biol 328: 181–190

    Article  PubMed  CAS  Google Scholar 

  • McEvilly RJ, Erkman L, Luo L, Sawchenko PE, Ryan AF, Rosenfeld MG (1996) Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384: 574–577

    Article  PubMed  CAS  Google Scholar 

  • McFarlane S, McNeill L, Holt CE (1995) FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15: 1017–1028

    Article  PubMed  CAS  Google Scholar 

  • McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125: 3967–3975

    PubMed  CAS  Google Scholar 

  • McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbxl. Development 124: 3221–3232

    PubMed  CAS  Google Scholar 

  • Mey J, McCaffery P, Drager UC (1997) Retinoic acid synthesis in the developing chick retina. J Neurosci 17: 7441–7449

    PubMed  CAS  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378: 386–390

    Article  PubMed  CAS  Google Scholar 

  • Morrow EM, Belliveau MJ, Cepko CL (1998) Two phases of rod photoreceptor differentiation during rat retinal development. J Neurosci 18: 3738–3748

    PubMed  CAS  Google Scholar 

  • Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 23–36

    PubMed  CAS  Google Scholar 

  • Nag TC, Jotwani G, Wadhwa S (1998) Immunohistochemical localization of taurine in the retina of developing and adult human and adult monkey. Neurochem Int 33: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S (1982) New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinas after neurotoxic destruction. Science 216: 747–749

    Article  PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S (1985) Growth rate of a peripheral annulus defined by neurotoxic destruction in the goldfish retina. Brain Res 352: 291–295

    PubMed  CAS  Google Scholar 

  • Neophytou C, Vernallis AB, Smith A, Raff MC (1997) Muller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development 124: 2345–2354

    PubMed  CAS  Google Scholar 

  • Nicotra CM, Gueli MC, de Luca G, Bono A, Pintaudi AM, Paganini A (1994) Retinoid dynamics in chicken eye during pre- and postnatal development. Mol Cell Biochem 132: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi H, Yoshioka H, Tanaka A, Kawakami Y, Nohno T, Noji S (1994) Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem Biophys Res Commun 204: 882–888

    Article  PubMed  CAS  Google Scholar 

  • Passini MA, Levine EM, Canger AK, Raymond PA, Schechter N (1997) Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J Comp Neurol 388: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Patstone G, Pasquale EB, Maher PA (1993) Different members of the fibroblast growth factor receptor family are specific to distinct cell types in the developing chicken embryo. Dev Biol 155: 107–123

    Article  PubMed  CAS  Google Scholar 

  • Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124: 805–816

    PubMed  CAS  Google Scholar 

  • Prati M, Calvo R, Morreale G, Morreale de Escobar G (1992) L-thyroxine and 3,5,3′-triiodothyronine concentrations in the chicken egg and in the embryo before and after the onset of thyroid function. Endocrinology 130: 2651–2659

    Article  PubMed  CAS  Google Scholar 

  • Puschel AW, Gruss P, Westerfield M (1992) Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114: 643–651

    PubMed  CAS  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785–789

    Article  PubMed  CAS  Google Scholar 

  • Reh TA, Tully T (1986) Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev Biol 114:463–469

    Article  PubMed  CAS  Google Scholar 

  • Reh TA (1987) Cell-specific regulation of neuronal production in the larval frog retina. J Neurosci 7: 3317–3324

    PubMed  CAS  Google Scholar 

  • Reh TA, Kljavin IJ (1989) Age of differentiation determines rat retinal germinal cell phenotype: induction of differentiation by dissociation. J Neurosci 9: 4179–4189

    PubMed  CAS  Google Scholar 

  • Reh TA (1992) Cellular interactions determine neuronal phenotypes in rodent retinal cultures. J Neurobiol 23: 1067–1083

    Article  PubMed  CAS  Google Scholar 

  • Rickman DW, Brecha NC (1995) Expression of the proto-oncogene, trk, receptors in the developing rat retina. Visual Neurosci 12:215–222

    Article  CAS  Google Scholar 

  • Rickman DW, Rickman CB (1996) Suppression of trkB expression by antisense oligonucleotides alters a neuronal phenotype in the rod pathway of the developing rat retina. Proc Natl Acad Sci USA 93: 12564–12569

    Article  PubMed  CAS  Google Scholar 

  • Riou JF, Delarue M, Mendez AP, Boucaut JC (1998) Role of fibroblast growth factor during early midbrain development in Xenopus. Mech Dev 78: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Rossant J, Zirngibl R, Cado D, Shago M, Giguere V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5: 1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Rortocil T, Matter-Sadzinski L, Alliod C, Ballivet M, Matter JM (1997) NeuroM, a neural helixloop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124: 3263–3272

    Google Scholar 

  • Ruberte E, Dolle P, Chambon P, Morriss-Kay G (1991) Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111: 45–60

    PubMed  CAS  Google Scholar 

  • Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loophelix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6:2620–2634

    Article  PubMed  CAS  Google Scholar 

  • Seleiro EA, Darling D, Brickell PM (1994) The chicken retinoid-X-receptor-γ gene gives rise to two distinct species of mRNA with different patterns of expression. Biochem J 301: 283–288

    PubMed  CAS  Google Scholar 

  • Sjoberg M, Vennstrom B, Forrest D (1992) Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors. Development 114: 39–47

    PubMed  CAS  Google Scholar 

  • Smith SM, Dickman ED, Power SC, Lancman J (1998) Retinoids and their receptors in vertebrate embryogenesis. J Nutr 128: 467S-470S

    PubMed  CAS  Google Scholar 

  • Snow RL, Robson JA (1994) Ganglion cell neurogenesis, migration and early differentiation in the chick retina. Neuroscience 58: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8: 221–241

    Article  PubMed  CAS  Google Scholar 

  • Stenkamp DL, Gregory JK, Adler R (1993) Retinoid effects in purified cultures of chick embryo retina neurons and photoreceptors. Invest Ophthalmol Visual Sci 34: 2425–2436

    CAS  Google Scholar 

  • Takabatake T, Ogawa M, Takahashi TC, Mizuno M, Okamoto M, Takeshima K (1997) Hedgehog and patched gene expression in adult ocular tissues. FEBS Lett 410: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi K, Sasai Y, Sakai Y, Watanabe T, Nakanishi S, Kageyama R (1994) Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. J Biol Chem 269: 5150–5156

    PubMed  CAS  Google Scholar 

  • Taylor M, Reh TA (1990) Induction of differentiation of rat retinal germinal neuroepithelial cells by cAMP. J Neurobiol 21:470–481

    Article  PubMed  CAS  Google Scholar 

  • Tcheng M, Fuhrmann G, Hartmann MP, Courtois Y, Jeanny JC (1994a) Spatial and temporal expression patterns of FGF receptor genes type 1 and type 2 in the developing chick retina. Exp Eye Res 58:351–358

    Article  PubMed  CAS  Google Scholar 

  • Tcheng M, Oliver L, Courtois Y, Jeanny JC (1994b) Effects of exogenous FGFs on growth, differentiation, and survival of chick neural retina cells. Exp Cell Res 212: 30–35

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Nakanishi S, Guillemot F, Kageyama R (1996a) MASH-1 promotes neuronal differentiation in the retina. Genes Cells 1: 765–774

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Ishibashi M, Nakahara K, Ang SL, Nakanishi S, Guillemot F, Kageyama R (1996b) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16: 723–734

    Article  PubMed  CAS  Google Scholar 

  • Truslove GM (1962) A gene causing ocular retardation in the mouse. J Embryol Exp Morphol 10: 652–660

    PubMed  CAS  Google Scholar 

  • Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4: 833–845

    Article  PubMed  CAS  Google Scholar 

  • Turner EE, Jenne KJ, Rosenfeld MG (1994) Brn-3.2: a Brn-3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid. Neuron 12: 205–218

    Article  PubMed  CAS  Google Scholar 

  • Waid DK, McLoon SC (1995) Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron 14: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Waid DK, McLoon SC (1998) Ganglion cells influence the fate of dividing retinal cells in culture. Development 125: 1059–1066

    PubMed  CAS  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113: 1435–1449

    PubMed  CAS  Google Scholar 

  • Wanaka A, Milbrandt J, Johnson EM, Jr. (1991) Expression of FGF receptor gene in rat development. Development 111: 455–468

    PubMed  CAS  Google Scholar 

  • Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4:461–467

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Raff MC (1992) Diffusible rod-promoting signals in the developing rat retina. Development 114: 899–906

    PubMed  CAS  Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239: 1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Wexler EM, Berkovich O, Nawy S (1998) Role of the low-affinity NGF receptor (p75) in survival of retinal bipolar cells. Visual Neurosci 15: 211–218

    Article  CAS  Google Scholar 

  • Wilke TA, Gubbels S, Schwartz J, Richman JM (1997) Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Dev Dyn 210: 41–52

    Article  PubMed  CAS  Google Scholar 

  • Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, Nathans J (1993) Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11:689–701

    Article  PubMed  CAS  Google Scholar 

  • Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15: 4762–4785

    PubMed  CAS  Google Scholar 

  • Xiang M, Gan L, Zhou L, Klein WH, Nathans J (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci USA 93:11950–11955

    Article  PubMed  CAS  Google Scholar 

  • Yan RT, Wang SZ (1998) NeuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro. J Neurobiol 36: 485–496

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuhrmann, S., Chow, L., Reh, T.A. (2000). Molecular Control of Cell Diversification in the Vertebrate Retina. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics