Skip to main content

How the Neural Retina Regenerates

  • Chapter
Vertebrate Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 31))

Abstract

The rules that govern cellular behavior during development and regeneration of tissues are complex and enigmatic, but substantial progress is being made toward understanding the molecular basis of proliferation and differentiation. Although most of the recent mechanistic insights have been gained from studies of embryonic development, the capacity of differentiated tissues and organs to regenerate is also an intriguing and important question (Lewis 1991; Brockes 1997; Ferrari et al. 1998). The greatest challenge to understanding how damaged tissues are repaired is to identify the stem cells and to understand the molecular factors that regulate their proliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J (1970) Postnatal neurogenesis and the problem of neural plasticity. In : Himwich WH (ed) Developmental Neurobiology. CC Thomas, Springfield, Illinois, pp 197–230

    Google Scholar 

  • Alvarez-Buylla A, Kirn JR (1997) Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol 33 : 585–601

    PubMed  CAS  Google Scholar 

  • Baird A (1994) Fibroblast growth factors : activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol 4 : 78–86

    PubMed  CAS  Google Scholar 

  • Baird A, Böhlen P (1990) Fibroblast growth factors. In : Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. Handbook of experimental pharmacology, vol 95/I. Springer, Berlin Heidelberg New York, pp 369–418

    Google Scholar 

  • Boucher SE, Hitchcock PF (1998) Insulin-related growth factors stimulate proliferation of retinal progenitors in the goldfish. J Comp Neurol 394 : 386–394

    PubMed  CAS  Google Scholar 

  • Braisted JE, Raymond PA (1992) Regeneration of dopaminergic neurons in goldfish retina. Development 114 : 913–919

    PubMed  CAS  Google Scholar 

  • Braisted JE, Raymond PA (1993) Continued search for the cellular signals that regulate regeneration of dopaminergic neurons in goldfish retina. Dev Brain Res 76:221–232

    CAS  Google Scholar 

  • Braisted JE, Essman TF, Raymond PA (1994) Selective regeneration of photoreceptors in goldfish retina. Development 120 : 2409–2419

    PubMed  CAS  Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration : rebuilding a complex structure. Science 276 : 81–87

    PubMed  CAS  Google Scholar 

  • Bugra K, Jacquemin E, Ortiz JR, Jeanny JC, Hicks D (1992) Analysis of opsin mRNA and protein expression in adult and regenerating newt retina by immunology and hybridization. J Neurocytol 21 : 171–183

    PubMed  CAS  Google Scholar 

  • Cameron DA, Easter SS (1993) The cone photoreceptor mosaic of the green sunfish, Lepomis cyanellus. Vis Neurosci 10 : 375–384

    PubMed  CAS  Google Scholar 

  • Cameron DA, Easter SS (1995) Cone photoreceptor regeneration in adult fish retina : phenotypic determination and mosaic pattern formation. Vis Neurosci 15 : 2255–2271

    CAS  Google Scholar 

  • Cameron DA, Cornwall MC, MacNichol EF (1997) Visual pigment assignments in regenerated retina. J Neurosci 17 : 917–923

    PubMed  CAS  Google Scholar 

  • Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93 : 589–595

    PubMed  CAS  Google Scholar 

  • Cheon EW, Kaneko Y, Saito T (1998) Regeneration of the newt retina : order of appearance of photoreceptors and ganglion cells. J Comp Neurol 396 : 267–274

    PubMed  CAS  Google Scholar 

  • Chiba C (1998) Appearance of glutamate-like immunoreactivity during retinal regeneration in the adult newt. Brain Res 785 : 171–177

    PubMed  CAS  Google Scholar 

  • Chiba C, Saito T (1995) Development of responses to excitatory and inhibitory amino acids in spiking cells during retinal regeneration in the adult newt. Jpn J Physiol 45 : 869–887

    PubMed  CAS  Google Scholar 

  • Chiba C, Matsushima O, Muneoka Y, Saito T (1997) Time course of appearance of GABA and GABA receptors during retinal regeneration in the adult newt. Dev Brain Res 98 : 204–210

    CAS  Google Scholar 

  • Cook J (1998) Getting to grips with neuronal diversity. In : Chalupa L, Finlay B (eds) Development and organization of the retina. Plenum Press, New York, pp 91–120

    Google Scholar 

  • Coulombre JL, Coulombre AJ (1965) Regeneration of neural from the pigmented epithelium in the chick embryo. Dev Biol 12 : 79–92

    PubMed  CAS  Google Scholar 

  • Dorsky RI, Rapaport DH, Harris WA (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14 : 487–496

    PubMed  CAS  Google Scholar 

  • Dorsky RI, Chang WS, Rapaport DH, Harris WA (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385 : 67–70

    PubMed  CAS  Google Scholar 

  • Dutt K, Scott M, Sternberg PP, Linser PJ, Srinivasan A (1993) Transdifferentiation of adult human pigment epithelium into retinal cells by transfection with an activated H-ras protooncogene. DNA Cell Biol 12 : 667–673

    PubMed  CAS  Google Scholar 

  • Easter SS (1983) Postnatal neurogenesis and changing connections. Trends Neurosci 6 : 53–56

    Google Scholar 

  • Eguchi G, Kodama R (1993) Transdifferentiation. Curr Opin Cell Biol 5 : 1023–1028

    PubMed  CAS  Google Scholar 

  • Eriksson P, Perfilieva E, Bjork-Eriksson T, Alborn A, Nordborg C, Peterson D, Gage F (1998) Neurogenesis in the adult human hippocampus. Nat Med 4 : 1313–1317

    PubMed  CAS  Google Scholar 

  • Fernald RD (1991) Teleost vision : seeing while growing. J Exp Zool 5 : 167–180

    Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow derived myogenic progenitors. Science 279 : 1528–1530

    PubMed  CAS  Google Scholar 

  • Finch CE, Laping NJ, Morgan TE, Nichols NR, Pasinetti GM (1993) TGF-β1 is an organizer of responses to neurodegeneration. J Cell Biochem 53 : 314–322

    PubMed  CAS  Google Scholar 

  • Fleming RJ, Purcell K, Artavanis-Tsakonas S (1997) The NOTCH receptor and its ligands. Trends Cell Biol 7 : 437–441

    PubMed  CAS  Google Scholar 

  • Fuji J, Wakasugi N (1993) Transdifferentiation from retinal pigment epithelium (RPE) into neural retina due to silver plumage mutant gene in Japanese quail. Dev Growth Differ 35:487–493

    Google Scholar 

  • Gaze R, Watson WE (1968) Cell division and migration in the brain after optic nerve lesions. In : Wolstenholme GEW, O’Connor M (eds) Growth of the nervous system. Ciba Foundation Symposium. Churchill, London, pp 53–67

    Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80 : 2390–2394

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen B, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95 : 3168–3171

    PubMed  CAS  Google Scholar 

  • Graziadei PPC, Monti Graziadei GA (1978) The olfactory system : a model for the study of neurogenesis and axon regeneration in mammals. In : Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 131–151

    Google Scholar 

  • Grigorian EN (1996) [The urodelean retina as a model for studying the retinal regeneration potentials of other vertebrates] [in Russian]. Ontogenez 27 : 173–185

    PubMed  CAS  Google Scholar 

  • Grigorian EN, Anton GJ (1995) [An analysis of keratin expression in the cells of the retinal pigment epithelium during transdifferentiation in newts] [in Russian]. Ontogenez 26 : 310–323

    PubMed  CAS  Google Scholar 

  • Grigorian EN, Ivanova IP, Poplinskaia VA (1996) [The discovery of new internal sources of neural retinal regeneration after its detachment in newts. Morphological and quantitative research] [in Russian]. Izv Akad Nauk Ser Biol 3 : 319–332

    PubMed  Google Scholar 

  • Guillemot F, Cepko CL (1992) Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114 : 743–754

    PubMed  CAS  Google Scholar 

  • Henken DB, Yoon MG (1989) Optic nerve crush modulates proliferation of rod precursor cells in goldfish retina. Brain Res 501 : 247–259

    PubMed  CAS  Google Scholar 

  • Hitchcock PF (1997) Tracer coupling among regenerated amacrine cells in the retina of the goldfish. Vis Neurosci 14 : 463–472

    PubMed  CAS  Google Scholar 

  • Hitchcock PF, Cirenza P (1994) Synaptic organization of regenerated retina in the goldfish. J Comp Neurol 343 : 609–616

    PubMed  CAS  Google Scholar 

  • Hitchcock PF, Raymond PA (1992) Retinal regeneration. Trends Neurosci 15 : 103–108

    PubMed  CAS  Google Scholar 

  • Hitchcock PF, Vanderyt JT (1994) Regeneration of the dopamine-cell mosaic in the retina of the goldfish. Vis Neurosci 11 : 209–217

    PubMed  CAS  Google Scholar 

  • Hitchcock PF, Lindsey Myhr KJ, Easter SS, Mangione-Smith R, Jones DD (1992) Local regeneration in the retina of the goldfish. J Neurobiol 23 : 187–203

    PubMed  CAS  Google Scholar 

  • Hitchcock PF, Macdonald RE, Van De Ryt JT, Wilson SW (1996) Antibodies against pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. J Neurobiol 29 : 399–413

    PubMed  CAS  Google Scholar 

  • Humphrey MF, Constable IJ, Chu Y, Wiffen S (1993) A quantitative study of the lateral spread of Müller cell responses to retinal lesions in the rabbit. J Comp Neurol 334 : 545–558

    PubMed  CAS  Google Scholar 

  • Humphrey MF, Chu Y, Mann K, Rakoczy P (1997) Retinal GFAP and bFGF expression after multiple argon laser photocoagulation injuries assessed by both immunoreactivity and mRNA levels. Exp Eye Res 64:361–369

    PubMed  CAS  Google Scholar 

  • Julian D, Ennis K, Korenbrot JI (1998) Birth and fate of proliferative cells in the inner nuclear layer of the mature fish retina. J Comp Neurol 394 : 271–282

    PubMed  CAS  Google Scholar 

  • Kajiwara K, Okano H, Sagara H, Arizumi T, Asashima M, Shooter E (1999) Transitory mixed phenotype of retinal pigmented epithelium and neural retina precursors in transdifferentiation process during retinal regeneration. Invest Ophthal Vis Sci 40 : 960

    Google Scholar 

  • Kaneko Y, Saito T (1992) Appearance and maturation of voltage-dependent conductances in solitary spiking cells during retinal regeneration in the adult newt. J Comp Physiol Ser A 170:411–425

    CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1981) Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195:323–338

    PubMed  CAS  Google Scholar 

  • Kaplan MS, McNelly NA, Hinds JW (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239 : 117–125

    PubMed  CAS  Google Scholar 

  • Kästner R, Wolburg H (1982) Functional regeneration of the visual system in teleosts. Comparative investigations after optic nerve crush and damage of the retina. Z Naturforsch 37:1274–1280

    Google Scholar 

  • Keefe J (1973a) An analysis of urodelian retinal regeneration. I. Studies of the cellular source of retinal regeneration in Notophthalamus viridescens utilizing 3H-thymidine and colchicine. J Exp Zool 184 : 185, 206

    PubMed  CAS  Google Scholar 

  • Keefe J (1973b) An analysis of urodelian retinal regeneration. IV. Studies of the cellular source of retinal regeneration in Triturus cristatus carnifex using 3H-thymidine. J Exp Zool 184:239, 258

    Google Scholar 

  • Kirsche W (1960) Zur Frage der Regeneration des Mittelhirnes der Teleostei [On the question of regeneration of the midbrain in teleost fish] [in German]. Verh Anat Gesell 56 : 259–270

    Google Scholar 

  • Kirsche W (1967) Ãœber postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre [Postembryonic matrix zones in the brains of various vertebrates and their relationship to the study of brain organization] [in German]. Z Mikrosk Anat Forsch 77 : 313–406

    PubMed  CAS  Google Scholar 

  • Kirsche W, Kirsche K (1961) Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum Opticum von Carassius auratus [Experimental investigations on the question of regeneration and function of the optic tectum in goldfish.] [in German]. Z Mikrosk Anat Forsch 67 : 140–182

    PubMed  CAS  Google Scholar 

  • Klein LR, MacLeish PR, Wiesel TN (1990) Immunolabelling by a newt retinal pigment epithelium antibody during retinal development and regeneration. J Comp Neurol 293 : 331–339

    PubMed  CAS  Google Scholar 

  • Knight J, Raymond P (1994) Retinal pigmented epithelium does not transdifferentiate in adult goldfish. J Neurobiol 27 : 447–456

    Google Scholar 

  • Kodama R, Eguchi G (1995) From lens regeneration in the newt to in vitro transdifferentiation of vertebrate pigmented epithelial cells. Semin Cell Biol 6 : 143–149

    PubMed  CAS  Google Scholar 

  • Kurz-Isler G, Wolburg H (1982) Morphological study on the regeneration of the retina in the rainbow trout after ouabain-induced damage : evidence for dedifferentiation of photoreceptors. Cell Tissue Res 225 : 165–178

    PubMed  CAS  Google Scholar 

  • Lam K (1977) Electroretinogram of the newt during retinal regeneration. Brain Res 136 : 148–153

    PubMed  CAS  Google Scholar 

  • Levine EM, Hitchcock PF, Glasgow E, Schechter N (1994) Restricted expression of a new pairedclass homeobox gene in normal and regenerating adult goldfish retina. J Comp Neurol 348:596–606

    PubMed  CAS  Google Scholar 

  • Levine R (1975) Regeneration of the retina in the adult newt, Triturus cristatus, following surgical division of the eye by a limbal incision. J Exp Zool 192 : 363–380

    PubMed  CAS  Google Scholar 

  • Levine R (1977) Regeneration of the retina in the adult newt, Triturus cristatus, following surgical division of the eye by a post-limbal incision. J Exp Zool 200 : 41–54

    PubMed  CAS  Google Scholar 

  • Levine RL (1981) La régénérescence de la rétine chez Xenopus laevis [Regeneration of the retina in Xenopus laevis] [in French]. Rev Can Biol 40 : 19–27

    Google Scholar 

  • Lewis J (1991) Rules for the production of sensory cells. In : Bock G and Whelan J (eds) Regeneration of vertebrate sensory receptor cells. Ciba Foundation Symposium, vol 160. John Wiley, Chichester, pp 25–39

    Google Scholar 

  • Lombardo F (1968) La rigenerazione della retina negli adulti di un Teleosteo. [Regeneration of the retina in an adult teleost] [in Italian]. Accad Lincei-Rendiconti Scienze Fis Mat Nat Ser 8, 45 : 631–635

    Google Scholar 

  • Lombardo F (1972) Andamento e localizzazione della mitosi durante la rigenerazione della retina di un Teleosteo adulto. [Time course and localization of mitoses during regeneration of the retina in an adult teleost.] [in Italian]. Accad Lincei-Rendiconti Scienze Fis Mat Nat Ser 8, 53 : 323–327

    Google Scholar 

  • Lopashov GZ, Sologub AA (1972) Artificial metaplasia of pigmented epithelium into retina in tadpoles and adult frogs. J Embryol Exp Morphol 28 : 521, 547

    PubMed  CAS  Google Scholar 

  • Maier W, Wolburg H (1979) Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell Tissue Res 202 : 99–118

    PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276 : 66–71

    PubMed  CAS  Google Scholar 

  • Mensinger A, Powers M (1999) Visual function in regenerating teleost retina following cytotoxic lesioning. Vis Neurosci (in press)

    Google Scholar 

  • Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair : focus on prostanoids and nitric oxide. Prog Neurobiol 54 : 99–125

    PubMed  CAS  Google Scholar 

  • Mitashov VI (1996) Mechanisms of retina regeneration in urodeles. Int J Dev Biol 40 : 833–844

    PubMed  CAS  Google Scholar 

  • Mitashov VI (1997) Retinal regeneration in amphibians. Int J Dev Biol 41 : 893–905

    PubMed  CAS  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, Van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain : a relatively quiescent subpopulation of subependymal cells. Neuron 13 : 1071–1082

    PubMed  CAS  Google Scholar 

  • Nagy T, Reh TA (1994) Inhibition of retinal regeneration in larval Rana by an antibody directed against a laminin-heparan sulfate proteoglycan. Dev Brain Res 81 : 131–134

    CAS  Google Scholar 

  • Negishi K, Shinagawa S (1993) Fibroblast growth factor induces proliferating cell nuclear antigen-immunoreactive cells in goldfish retina. Neurosci Res 18 : 143–156

    PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S, Nakamura Y (1987) Paradoxical induction of dopaminergic cells following intravitreal injection of high doses of 6-hydroxydopamine in juvenile carp retina. Dev Brain Res 33 : 67–79

    CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S, Nakamura Y (1988) Immunohistochemical and autoradiographic studies on retinal regeneration in teleost fish. Neurosci Res Suppl 8 : S43–57

    PubMed  CAS  Google Scholar 

  • Negishi K, Stell WK, Teranishi T, Karkhanis A, Owusu-Yaw V, Takasaki Y (1991a) Induction of proliferating cell nuclear antigen (PCNA)-immunoreactive cells in goldfish retina following intravitreal injection with 6-hydroxydopamine. Cell Mol Neurobiol 11:639–659

    PubMed  CAS  Google Scholar 

  • Negishi K, Sugawara K, Shinagawa S, Teranishi T, Kuo CH, Takasaki Y (1991b) Induction of immunoreactive proliferating cell nuclear antigen (PCNA) in goldfish retina following intravitreal injection with tunicamycin. Dev Brain Res 63 : 71–83

    CAS  Google Scholar 

  • Negishi K, Shinagawa S, Ushijima M, Kaneko Y, Saito T (1992) An immunohistochemical study of regenerating newt retinas. Dev Brain Res 68 : 255–264

    CAS  Google Scholar 

  • Nottebohm F, Alvarez-Buylla A, Cynx J, Kirn J, Ling CY, Nottebohm M, Suter R, Tolles A, Williams H (1990) Song learning in birds : the relation between perception and production. Philos Trans R Soc Lond Ser B Biol Sci 329 : 115–124

    CAS  Google Scholar 

  • Nye JS, Kopan R (1995) Developmental signaling : vertebrate ligands for Notch. Curr Biol 5:966–969

    PubMed  CAS  Google Scholar 

  • Okada TS (1980) Cellular metaplasia or transdifferentiaton as a model for retinal cell differentiation. Curr Top Dev Biol 16 : 349–380

    PubMed  CAS  Google Scholar 

  • Opas M (1994) Substratum mechanics and cell differentiation. Int Rev Cytol 150 : 119–138

    PubMed  CAS  Google Scholar 

  • Opas M, Dziak E (1994) bFGF-induced transdifferentiation of RPE to neuronal progenitors is regulated by the mechanical properties of the substratum. Dev Biol 161 : 440–454

    PubMed  CAS  Google Scholar 

  • Ortiz JR, Vigny M, Courtois Y, Jeanny JC (1992) Immunocytochemical study of extracellular matrix components during lens and neural retina regeneration in the adult newt. Exp Eye Res 54 : 861–870

    PubMed  CAS  Google Scholar 

  • Owusu-Yaw V, Kyle A, Stell W (1992) Effects of lesions of the optic nerve, optic tectum and nervus terminalis on rod precursor proliferation in the goldfish retina. Brain Res 576 : 220–230

    PubMed  CAS  Google Scholar 

  • Park CM, Hollenberg MJ (1989) Basic fibroblast growth factor induces retinal regeneration. Dev Biol 134 : 201–205

    PubMed  CAS  Google Scholar 

  • Park CM, Hollenberg MJ (1991) Induction of retinal regeneration in vivo by growth factors. Dev Biol 148 : 322–333

    PubMed  CAS  Google Scholar 

  • Park CM, Hollenberg MJ (1993) Growth factor-induced retinal regeneration in vivo. Int Rev Cytol 146 : 49–74

    PubMed  CAS  Google Scholar 

  • Pennypacker K (1997) Transcription factors in brain injury. Histol Histopathol 12 : 1125–1133

    PubMed  CAS  Google Scholar 

  • Perron M, Harris W (1997) Relationships between neurogenic and proneural genes in Xenopus retinogenesis. Dev Biol 186 : 237–247

    Google Scholar 

  • Pittack C, Jones M, Reh TA (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113 : 9011–9023

    Google Scholar 

  • Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124 : 805–816

    PubMed  CAS  Google Scholar 

  • Powers M, Darst J, Palmer A, Pospichal M (1998) Retinal regeneration and vision : correlation between retinal structure and visual function. Soc Neurosci Abst 24 : 310

    Google Scholar 

  • Raivich G, Bluethmann H, Kreutzberg GW (1996) Signaling molecules and neuroglia activation in the injured central nervous system. Keio J Med 45 : 239–247

    PubMed  CAS  Google Scholar 

  • Raymond PA (1985) The unique origin of rod photoreceptors in the teleost retina. Trends Neurosci 8 : 12–17

    Google Scholar 

  • Raymond PA (1991) Retinal regeneration in teleost fish. In : Bock G, Whelan J (eds) Regeneration of vertebrate sensory receptor cells. Ciba Foundation Symposium, vol 160. John Wiley, Chichester, pp 171–186

    Google Scholar 

  • Raymond PA, Hitchcock PF (1997) Retinal regeneration : common principles but a diversity of mechanisms. Adv Neurol 72 : 171–184

    PubMed  CAS  Google Scholar 

  • Raymond PA, Rivlin PK (1987) Germinal cells in the goldfish retina that produce rod photoreceptors. Dev Biol 122 : 120–138

    PubMed  CAS  Google Scholar 

  • Raymond PA, Reifler MJ, Rivlin PK (1988a) Regeneration of goldfish retina : rod precursors are a likely source of regenerated cells. J Neurobiol 19 : 431–463

    PubMed  CAS  Google Scholar 

  • Raymond PA, Hitchcock PF, Palopoli MF (1988b) Neuronal cell proliferation and ocular enlargement in Black Moor goldfish. J Comp Neurol 276 : 231–238

    PubMed  CAS  Google Scholar 

  • Raymond Johns P (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J Comp Neurol 176 : 343–358

    Google Scholar 

  • Reh T (1991) Common mechanisms of retinal regeneration in the larval frog and embryonic chick. In : Bock G, Whelan J (eds) Regeneration of vertebrate sensory receptor cells. Ciba Foundation Symposium, vol 160. John Wiley, Chichester, pp 192–208

    Google Scholar 

  • Reh T, Levine E (1998) Multipotent stem cells and progenitors in the vertebrate retina. J Neurobiol 36 : 206–220

    PubMed  CAS  Google Scholar 

  • Reh TA, Nagy T (1987) A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev Biol 122:471–482

    PubMed  CAS  Google Scholar 

  • Reh TA, Pittack C (1995) Transdifferentiation and retinal regeneration. Semin Cell Biol 6 : 137–142

    PubMed  CAS  Google Scholar 

  • Reh TA, Nagy T, Gretton H (1987) Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330 : 68–71

    PubMed  CAS  Google Scholar 

  • Reyer RW (1977) The amphibian eye : development and regeneration. In : Crescitelli F (ed) The visual system in vertebrates. Handbook of Sensory Physiology, vol 7(5). Springer, Berlin Heidelberg New York, pp 309–390

    Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12 : 4565–4574

    PubMed  CAS  Google Scholar 

  • Richter W, Kranz D (1981a) Autoradiographic investigation on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special reference to the olfactory organ. Z Mikrosk Anat Forsch 95 : 883–904

    PubMed  CAS  Google Scholar 

  • Richter W, Kranz D (1981b) Autoradiographic investigations on postnatal proliferative activity of the matrix-zones of the brain in the trout (Salmo irideus). Z Mikrosk Anat Forsch 95 : 491–520

    PubMed  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes : cellular and molecular cues to biological function. Trends Neurosci 20 : 570–577

    PubMed  CAS  Google Scholar 

  • Robev E (1997) Notch in vertebrates. Curr Opin Genet Dev 7 : 551–557

    Google Scholar 

  • Saito T, Kaneko Y, Maruo F, Niino M, Sakaki Y (1994) Study of the regenerating newt retina by electrophysiology and immunohistochemistry (bipolar- and cone-specific antigen localization). J Exp Zool 270 : 491–500

    PubMed  CAS  Google Scholar 

  • Sakaguchi DS, Janick LM, Reh TA (1997) Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium : generation of retinal neurons and glia. Dev Dvn 209 387–389

    Google Scholar 

  • Sarthy VJ, Lam DMK (1983) Retinal regeneration in the adult newt, Notophthalmus viridescens: appearance of neurotransmitter synthesis and the electroretinogram. Dev Brain Res 6 : 99–105

    CAS  Google Scholar 

  • Segaar J (1965) Behavioural aspects of degeneration and regeneration in fish brain : a comparison with higher vertebrates, degeneration patterns in the nervous system. In : Singer M, Schade JP (eds) Degeneration patterns in the nervous system. Prog Brain Res, vol 14. Elsevier, Amsterdam, pp 143–231

    Google Scholar 

  • Sologub A (1975) Differentiation of the pigmented epithelium and stimulation of its metaplasia in teleost. Ontogenez 6 : 39–46

    Google Scholar 

  • Sologub AA (1977) Mechanisms of repression and derepression of artificial transformation of pigmented epithelium into retina in Xenopus laevis. Wilhelm Roux’s Arch Dev Biol 182:277–291

    Google Scholar 

  • Squier CA (1980) The stretching of mouse skin in vivo : effect on epidermal proliferation and thickness. Invest Dermatol 74 : 68–71

    CAS  Google Scholar 

  • Stone LS (1950a) Neural retina degeneration followed by regeneration from surviving pigment cells in grafted adult salamander eyes. Anat Rec 106 : 89–110

    PubMed  CAS  Google Scholar 

  • Stone LS (1950b) The role of retinal pigment cells in regenerating neural retinae of adult salamander eves. J Exp Zool 113 : 9–31

    Google Scholar 

  • Streit WJ (1996) The role of microglia in brain injury. NeuroToxicology 17:671–678

    PubMed  CAS  Google Scholar 

  • Stroeva OG, Mitashov VI (1983) Retinal pigment epithelium : proliferation and differentiation during development and regeneration. Int Rev Cvtol 83:221–293

    CAS  Google Scholar 

  • Stuermer CAO, Niepenberg A, Wolburg H (1985) Aberrant axonal paths in regenerated goldfish retina and tectum opticum following intraocular injection of ouabain. Neurosci Lett 58 : 333–338

    PubMed  CAS  Google Scholar 

  • Sullivan SA, Barthel LK, Largent BL, Raymond PA (1997) A goldfish Notch-3 homologue is expressed in neurogenic regions of embryonic, adult, and regenerating brain and retina. Dev Genet 20 : 208–223

    PubMed  CAS  Google Scholar 

  • Taylor JSH, Jack JL, Easter SS (1989) Is the capacity for optic nerve regeneration related to continued retinal ganglion cell production in the frog? A test of the hypothesis that neurogenesis and axon regeneration are obligatorily linked. Eur T Neurosci 1 : 626–638

    CAS  Google Scholar 

  • Tcheng M, Fuhrmann G, Hartmann MP, Courtois Y, Jeanny JC (1994) Spatial and temporal expression patterns of FGF receptor genes type 1 and type 2 in the developing chick retina. Exp Eye Res 58 : 351–358

    PubMed  CAS  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neurosci Lett 125 : 187–190

    PubMed  CAS  Google Scholar 

  • Wanaka A, Milbrandt J, Johnson EM (1991) Expression of FGiF receptor gene in rat development. Development 111 : 455–468

    PubMed  CAS  Google Scholar 

  • Wässle H, Riemann H (1978) The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond Ser B Biol Sci 200 : 441–461

    Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, Van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19 : 387–393

    PubMed  CAS  Google Scholar 

  • Zhao S, Thornquist SC, Barnstable CJ (1995) In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res 677 : 300–310

    PubMed  CAS  Google Scholar 

  • Zhao SL, Rizzolo LJ, Barnstable CJ (1997) Differentiation and transdifferentiation of the retinal pigment epithelium. Int Rev Cytol 171 : 225–266

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raymond, P.A., Hitchcock, P.F. (2000). How the Neural Retina Regenerates. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics