Skip to main content

Vertebrate Eye Development and Refractive Function: An Overview

  • Chapter
Vertebrate Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 31))

Abstract

The vertebrate eye is a sophisticated neurosensory/optical instrument capable of detecting minute quantities of light and providing high-resolution ability. It is made up of a variety of cellular and noncellular components derived from ectodermal and mesodermal germinal sources related to two primary functions: retinal image formation and retinal image processing. The overview which follows will describe the sequence of ocular development in general terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett AG, Francis JL (1962) The eye as an optical system. In: Dayson H (ed) Visual optics and the optical space sense. The Eye vol 4. Academic Press, New York, pp 103–132

    Google Scholar 

  • Bron AJ, Tripathi RC Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit, 8th edn. Chapman and Hall, London

    Google Scholar 

  • Duke-Elder S (1958) System of opthalmology. vol II. The anatomy of the visual system. Henry Kimpton, London

    Google Scholar 

  • Guo SS, Sivak JG, Callender MG, Diehl-Jones W (1995) Retinal dopamine and lens induced refractive errors in chicks. Curr Eye Res 14: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. WB Saunders, Philadelphia

    Google Scholar 

  • Irving EL, Sivak JG, Callender MG (1992) Refractive plasticity of the developing chick eye. Ophthalmic Physiol Opt 12: 448–456

    Article  PubMed  CAS  Google Scholar 

  • Irving L, Callender MG, Sivak JG (1995) Inducing ametropias in hatchling chicks by defocusaperture effects and cylindrical lenses. Vision Res 9: 1165–1174

    Article  Google Scholar 

  • Kuszak JR, Sivak JG, Weerheim JA (1991) Lens optical quality is a direct function of lens sutural architecture. Invest Ophthalmol Visual Sci 32:2119–2129

    CAS  Google Scholar 

  • Kuszak JR, Peterson KL, Sivak JG, Herbert KL (1994) The interrelationship of lens anatomy and optical quality. II. primate lenses. Exp Eye Research 59: 521–535

    Article  CAS  Google Scholar 

  • Mann I (1969) The development of the human eye. Grune and Stratton, New York

    Google Scholar 

  • Noden DM (1982) Periocular mesenchyme: neural crest and mesodermal interactions. In: Jakobiec FA (ed) Ocular anatomy, embryology, and teratology. Harper and Row, Philadelphia, pp 97–119

    Google Scholar 

  • Jakobiec FA, Ozanics V (1982) Prenatal development of the eye and its adnexa. In: Jakobiec FA (ed) Ocular anatomy, embryology and tertology. Harper and Row, Philadelphia, pp 11–96

    Google Scholar 

  • Jakobiec FA, Ozanics V (1982) General topographic anatomy of the eye. Arch. Ophthalmol, 1, 1

    Google Scholar 

  • Pickett-Seltner RL, Weerheim J, Sivak JG, Pasternak JJ (1987) Experimentally induced myopia does not affect post-hatching development of the chick lens. Vision Res 27: 1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Priolo S, Sivak JG, Irving EL, Callender MG, Moore SE (1999) Effect of age and experimentally induced ametropia on the optics and morphology of the avian crystalline lens. Vision science and it’s applications, Optical Society of America, Technical Digest Series, vol 1, pp 88–91

    Google Scholar 

  • Rodrigues MM, Warring GO III, Hackett J, Donohoo P (1982) Cornea. In: Jakobiec FA (ed) Ocular anatomy, embryology and teratology. Harper and Row, Philadelphia pp 153–165

    Google Scholar 

  • Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error and eye growth in chickens. Vision Res 28: 639–657

    Article  PubMed  CAS  Google Scholar 

  • Sivak JG (1980) Accommodation in vertebrates: a contemporary survey. In: Dayson H, Zadunaisky J (eds) Current topics in eye research, vol. 3. Academic Press, New York, pp 281–330

    Google Scholar 

  • Sivak JG (1985) Environmental influence on shape of the crystalline lens: the amphibian example. Exp Biol 44: 29–40

    PubMed  CAS  Google Scholar 

  • Sivak JG (1990) Optical variability of the fish lens. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 63–80

    Chapter  Google Scholar 

  • Sivak JG, Bobier WR (1990) Optical components of the eye. In: Rosenbloom AA, Morgan MW (eds) Principles and practice of pediatric optometry. JB Lippencott, Philadelphia, pp 31–45

    Google Scholar 

  • Sivak JG, Herbert KL, Peterson KL, Kuszak JR (1994) The interrelationship of lens anatomy and optical quality. 1. Non-primate lenses. Exp Eye Res 59: 505–520

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BJ, Tripathi RC, Wisdom J (1995) Embryology of the anterior segment of the human eye. In: Rich R, Schields MB, Krupin T (eds) The glaucoma. 2nd edn. Mosby, St Louis

    Google Scholar 

  • Wallman J, Turkel J, Trachtman J (1978) Extreme myopia produced by modest changes in visual experience. Science 201: 1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan

    Book  Google Scholar 

  • Wong STY (1998) Effects of induced myopia and myperopia on dopaminergic and seratonergic amcrine neurons in chick retina. Doctoral Dissertation, University of Waterloo, Waterloo, Ontario, 167 pp

    Google Scholar 

  • Worgul BV (1982) The lens. In: Jakobiec F A (ed) Ocular anatomy, embryology and tertology. Harper and Row, Philadelphia, pp 355–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sivak, B., Sivak, J. (2000). Vertebrate Eye Development and Refractive Function: An Overview. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics