Skip to main content

Regulation of Heat Shock Gene Expression During Xenopus Development

  • Chapter
Heat Shock and Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

Heat shock-induced activation of the expression of a set of heat shock protein (hsp) genes giving rise to the accumulation of hsp mRNA and the synthesis of Hsps is characteristic of essentially all prokaryotic and eukaryotic cells (reviewed by Nover 1984: Atkinson and Walden 1985; Craig 1985; Lindquist 1986). However, in early stages of animal embryogenesis a heat shock response is not detectable. For example, during Xenopus laevis development heat shock-induced synthesis of Hsps does not occur in early cleavage stage embryos (Heikkila et al. 1985a; Nickells and Browder 1985; Browder et al. 1989). Only immediately after the midblastula transition (MBT) of development, do embryos respond to heat shock by synthesizing Hsps with molecular weights of 87 (Hsp87) and 70 kd (Hsp70). Interestingly, the acquisition of the ability of the Xenopus embryos to synthesize hsps coincides with a dramatic increase in the acquisition of thermoresistance. This last finding is consistent with numerous studies suggesting that Hsp synthesis may play a role in the development of thermotolerance (Lindquist 1986). Also during Drosophila and sea-urchin development, heat-induced Hsp synthesis is not observed until embryos reach the blastoderm and blastula stage respectively (Dura 1981; Roccheri et al.1981; Heikkila et al. 1985a,b, 1986). Mouse and rabbit embryos are incompetent for heat-induced Hsp synthesis during the early cleavage stages of development but do synthesize Hsp70 at the blastocyst stage (Heikkila and Schultz 1984; Heikkila et al. 1985b). Given the similarity in the timing of the acquisition of the heat shock response in insect, echinoderm, amphibian and mammalian development, it is likely that this phenomenon has been conserved through evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews GK, Harding MA, Calvet JP, Adamson ED (1987) The heat shock response in HeLa cells is accompanied by elevated expression of the c-fose proto-oncogene. Mol Cell Biol 7: 3452–3458

    PubMed  CAS  Google Scholar 

  • Antoniou M, deBoer E, Habets G, Grosveld F (1988) The human B-globin gene contains multiple regulatory regions:identification of one promoter and two downstream enhancers. EMBO J 7: 377–384

    PubMed  CAS  Google Scholar 

  • Atkinson BG, Walden DB (eds) (1985) Changes in eukaryotic gene expression in response to environmental stress. Academic Press, Orlando, pp

    Google Scholar 

  • Bienz M (1984a) Developmental control of the heat shock response in Xenopus. Proc Natl Acad Sci USA 81: 3138–3142

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (1984b) Xenopus hsp70 genes are constitutively expressed in injected oocytes. EMBO J 3:2477–2483

    CAS  Google Scholar 

  • Bienz M (1986) A CCAAT box confers cell -type-specific regulation on the Xenopus hsp70 gene in oocytes. Cell 46: 1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1982) Expression of a Drosophila heat shock protein in Xenopus oocytes:conserved and divergent regulatory signals. EMBO J 1: 1583–1588

    PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5: 949–956

    PubMed  CAS  Google Scholar 

  • Brawerman G (1987) Determinants of messenger RNA stability. Cell 48: 5–6

    Article  PubMed  CAS  Google Scholar 

  • Browder, LW, Pollock M, Nickells RW, Heikkila JJ, Winning RS, (1989) Developmental regulation of the heat shock response. In:DiBeradino MA, Etkin LD (eds) Developmental biology. A comprehensive synthesis. Vol. 6. Adaptability in somatic cell specialization. Plenum, New York, pp 97–147

    Google Scholar 

  • Ciechanover A, Finley D, Varshayski A (1984) The ubiquitin mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J Cell Biochem 24: 27–53

    Article  PubMed  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280

    Article  PubMed  CAS  Google Scholar 

  • Darasch SP, Mosser DD, Bols NC, Heikkila JJ (1988) Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments. Biochem Cell Biol 66: 862–870

    Article  PubMed  CAS  Google Scholar 

  • Didomenico BJ, Bugaisky GE, Lindquist S (1982a) Heat shock and recovery are mediated by different translational mechanisms. Proc Natl Acad Sci USA 79: 6181–6185

    Article  PubMed  CAS  Google Scholar 

  • Didomenico BJ, Bugaisky GE, Lindquist S (1982b) The heat shock response is self regulated at both the transcriptional and post transcriptional levels. Cell 31: 593–603

    Article  PubMed  CAS  Google Scholar 

  • Dura JM (1981) Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster. Mol Gen Genet 184: 381–385

    Article  PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens MP (1989) Poly (A) addition during maturation of frog oocytes:distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3: 21512162

    Google Scholar 

  • Goldenberg CJ, Luo Y, Fenna M, Baler R, Weinmann R, Voellmy R (1988) Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. J Biol Chem 263: 19734–19739

    PubMed  CAS  Google Scholar 

  • Goldman MA (1988) The chromatin domain as a unit of gene regulation BioEssays 9: 50–55

    CAS  Google Scholar 

  • Heikkila JJ (1990) Expression of cloned genes and translation of messenger RNA in microinjected Xenopus oocytes. Int J Biochem 22: 1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ, Schultz GA (1984) Different environmental stresses can activate the expression of a heat shock gene in rabbit blastocyst. Gamete Res 10: 45–56

    Article  CAS  Google Scholar 

  • Heikkila JJ, Kloc M, Bury J, Schultz GA, Browder LW (1985a) Acquisition of the heat shock response and thermotolerance during early development of Xenopus laevis. Dev Biol 107: 483–489

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ, Miller JGO, Schultz GA, Kloc M, Browder LW (1985b) Heat shock gene expression during early animal development. In:Atkinson BG, Walden DB (eds) Changes in eukaryotic gene expression in response to environmental stress. Academic Press, Orlando, pp 135–158

    Chapter  Google Scholar 

  • Heikkila JJ, Browder LW, Gedamu L, Nickells RW, Schultz GA (1986) Heat-shock gene expression in animal embryonic systems. Can J Genet Cytol 28: 1093–1105

    PubMed  CAS  Google Scholar 

  • Heikkila JJ, Darasch SP, Mosser DD, Bols NC (1987a) Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells. Biochem Cell Biol 65: 310–316

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ, Ovsenek N, Krone P (1987b) Examination of heat shock protein mRNA accumulation in early Xenopus laevis embryos. Biochem Cell Biol 65: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Horrell A, Shuttleworth J, Colman A (1987) Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes. Genes Dev 1: 433–444

    Article  PubMed  CAS  Google Scholar 

  • Johnston RN, Kucey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242: 1551–1554

    Article  PubMed  CAS  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48: 399–407

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Schueltz TJ, Larin Z (1987) Heat-inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol 7: 1530–1534

    PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1985) Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. EMBO J 4: 3463–3471

    PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1987) An enhancer responsible for activating transcription at the midblastula transition of Xenopus development. Proc Natl Acad Sci USA 84: 2331–2335

    Article  PubMed  CAS  Google Scholar 

  • Krone P, Heikkila JJ (1988) Analysis of hsp 30, hsp 70 and ubiquitin gene expression in Xenopus laevis tadpoles. Development 103: 59–67

    PubMed  CAS  Google Scholar 

  • Krone P, Heikkila JJ (1989) Expression of microinjected hsp70/CAT and hsp70/CAT chimeric genes in developing Xenopus laevis embryos. Development 106: 271–281

    PubMed  CAS  Google Scholar 

  • Krone PH, Snow A, Ali A, Pasternak JJ, Heikkila JJ (1991) Comparison of regulatory and structural regions of the Xenopus laevis small heat shock protein gene family. Gene (in press)

    Google Scholar 

  • Larson JS, Schuetz TJ, KIngston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Manley JL (1989) Transcriptional repression of eukaryotic promoters. Cell 59: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lohse P, Arnold HH (1988) The down-regulation of the chicken cytoplasmic ß-actin during myogenic differentiation does not require the promoter but involves the 3’ end of the gene. Nucl Acids Res 16: 2787–2803

    Article  PubMed  CAS  Google Scholar 

  • Mason PJ, Hall LMC, Gausz J (1984) The expression of heat shock genes during normal development in Drosophila melanogaster. Mol Gen Genet 194: 73–78

    Article  CAS  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin M, Richter JD (1989) Poly (A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3: 803–815

    Article  PubMed  CAS  Google Scholar 

  • Mezger V, Bensaude O, Morange M (1989) Unusual levels of heat shock element-binding activity in embryonal carcinoma cells. Mol Cell Biol 9: 3888–3896

    PubMed  CAS  Google Scholar 

  • Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8: 4736–4744

    PubMed  CAS  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos:I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686

    Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos:II Control of the onset of transcription Cell 30: 687–696

    CAS  Google Scholar 

  • Nickells RW, Browder LW (1985) Region-specific heat-shock protein synthesis correlates with a biphasic acquisition of thermotolerance in Xenopus laevis embryos. Dev Biol 112: 391–395

    Article  CAS  Google Scholar 

  • Nover L (1984) Heat shock response of eukaryotic cells. Springer-Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Nover L, Scharf K-D (1984) Synthesis, modification and structural binding of heat-shock proteins in tomao cell cultures. Eur J Biochem 139: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Scharf K-D, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9: 1298–1308

    PubMed  CAS  Google Scholar 

  • Ovsenek N, Heikkila JJ (1988) Heat shock-induced accumulation of ubiquitin mRNA in Xenopus laevis is developmentally regulated. Dev Biol 129: 582–585

    Article  PubMed  CAS  Google Scholar 

  • Ovsenek N, Heikkila JJ (1990) DNA sequence-specific binding activity of the heat shock transcription factor is heat-inducible before the midblastula transition of early Xenopus development. Development 110: 427–433

    PubMed  CAS  Google Scholar 

  • Ovsenek N, Williams GT, Morimoto RI, Heikkila JJ (1990) Cis-acting sequences and trans-acting factors required for constitutive expression of a microinjected hsp70 gene after the midblastula transition of Xenopus laevis embryogenesis. Dev Genet 11: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Ozkaynak E, Finley D. Solomon MJ, Varshaysky A (1987) The yeast ubiquitin genes:a family of natural gene fusions. EMBO J 6: 1429–1439

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promoter element in Drosophila hsp70 heat-shock gene. Cell 30: 517–528

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB, Bienz M (1982) A synthetic heat-shock promoter element confers heat—inducibility on the herpes simplex virus thymidine kinase gene. EMBO J 1: 1473–1477

    PubMed  CAS  Google Scholar 

  • Petersen NS, Mitchell HK (1982) Effects of heat shock on gene expression during development:induction and prevention of multihair phenocopy in Drosophila. In:Schlesinger MJ, Ashburner M, Tissieres A (eds) Heat shock:from bacteria to man. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, pp 345–352

    Google Scholar 

  • Peterson R, Lindquist S (1989) The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene 72: 161–168

    Article  Google Scholar 

  • Peterson R, Lindquist S (1989) Regulation of hsp synthesis by messenger RNA degradation. Cell Reg 1: 135–149

    Google Scholar 

  • Riabowol, KT, Mizzen LE., Welch WJ (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Roccheri MC, DiBernardo MG, Giudice G (1981) Synthesis of heat shock proteins in developing sea urchins. Dev Biol 83: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Sadis S, Hickey E, Weber LA (1988) Effect of heat shock on RNA metabolism in HeLa cells. J Cell Physiol 135: 377–386

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin K, Davidson N (1982) Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B. Dev Biol 89: 196–210

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Lewis MJ, Pelham HRB (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Steinbeisser H, Hofmann A, Stutz F, Trendelenberg MF (1988) Different regulatory elements are required for cell-type and stage specific expression of the Xenopus laevis skeletal muscle actin gene upon injection in X. laevis oocytes and embryos. Nucl Acids Res 16: 3223–3238

    Article  PubMed  CAS  Google Scholar 

  • Storti RV, Scott MP, Rich A, Pardue ML (1980) Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell 22: 825–834

    Article  PubMed  CAS  Google Scholar 

  • Vriz S, Mechali M (1989) Analysis of 3’-untranslated regions of 7 c-myc genes reveals conserved elements prevalent in post-transcriptionally regulated genes. FEBS Lett 251: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wilson S, Walker B, Dawid I, Paisley T, Zimarino V, Ueda H (1987) Purification and properties of Drosophila heat shock activator protein. Science 238: 1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Zimarino V, Tsai C, Wu C (1990) Complex modes of heat shock factor activation. Mol Cell Biol 10: 752–759

    PubMed  CAS  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32: 1161–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heikkila, J.J., Krone, P.H., Ovsenek, N. (1991). Regulation of Heat Shock Gene Expression During Xenopus Development. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics