Skip to main content

Expression of Heat Shock Proteins During Development in Drosophila

  • Chapter
Heat Shock and Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

Historically, heat shock proteins (Hsp) were defined to be proteins induced by heat or by various types of chemical stresses. However, numerous early observations suggested that heat shock genes could be expressed without any stress either during normal development and/or during cellular differentiation. Mirault et al. (1978) first suggested that some of the Hsps in Drosophila melanogaster, namely Hsp83 and Hsp70, were made at a low level under normal conditions in the absence of cellular stress. This observation which was made in cultured cells was also found to be applicable to animals as shown by the early demonstration of Chomyn and Mitchell (1982) that Hsp83 was expressed in various tissues of larvae and pupae. Using gene probes, Mason et al. (1984) showed the presence of heat shock transcripts at various stages of development of D. melanogaster. More recently, studies using specific antibodies and/or P-element-mediated transformation have shed some new light on the cell-, tissue-and development-specific expression of the var,ious Hsps in the absence of stress. It is becoming evident that most heat shock genes are expressed at some time or in specific tissues during development and cellular differentiation. The inducibility of the heat shock response in Drosophila has been known to be stage-dependent as shown by Dura in 1981. Thus in terms of inducibility, the fruit fly has a behavior similar to that observed in many other organisms (for reviews see Bond and Schlesinger 1987 and this Vol.). Here, we review studies on the expression of the Hsps in the absence of stress with special emphasis on the small heat shock proteins of D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo AP (1987) Cellular localization of hsp23 during Drosophila development and subsequent heat shock. Dev Biol 122: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (1990a) The monovalent ionophore monensin maintains the nuclear localization of the human stress protein hsp28 during heat shock recovery. J Cell Science 96: 419–427

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1990b) Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol 10: 1276–1280

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Ahmad-Zadeh C (1981) Immunofluorescence localization of a small heat shock protein hsp23) in Drosophila melanogaster. Mol Gen Genet 184: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Pauli D (1988) Characterization of hsp27 and of three immunologically related polypeptides during Drosophila development. Exp Cell Res 175, 169–183

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Welch WJ (1987) Characterization and purification of the mammalian 28,000 dalton heat shock protein. J Biol Chem 262: 15359–15369

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Fakan S, Tissières A (1980) Localization of the heat shock induced proteins in Drosophila melanogaster tissue culture cells. Dev Biol 78: 86–103

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Darlix JD, Khandjian EW, Simon M, Spahr PF (1985) Characterization of the prosome from Drosophila and its similarity to the cytoplasmic structure formed by the low molecular weight heat shock proteins. EMBO J 4: 2942–2954

    Google Scholar 

  • Arrigo AP, Suhan J, Welch WJ (1988) Dynamic changes in the structure and locale of the mammalian low molecular weight heat shock protein. Mol Cell Biol 8: 505–5071

    Google Scholar 

  • Ayme A, Tissières A (1985) Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J 4: 2949–2954

    PubMed  CAS  Google Scholar 

  • Beaulieu JF, Tanguay RM (1988) Members of the Drosophila HSP 70 family share ATP-binding proprties. Eur J Biochem 172: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JF, Arrigo AP, Tanguay RM (1989) Interaction of Drosophila 27Kd heat shock protein with the nucleus of heat-shocked and ecdysterone-stimulated cultured cells. J Cell Science 92: 29–36

    PubMed  Google Scholar 

  • Berger EM, Woodward MP (1983) Small heat shock proteins of Drosophila may confer thermal tolerance. Exp Cell Res 147: 437–442

    Article  PubMed  CAS  Google Scholar 

  • Bhat SP, Nagineni CN (1989) AlphaB-subunit of lens-specific alphaB-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Comm 158: 319–325

    Article  PubMed  CAS  Google Scholar 

  • Bielka H, Benndorf R, Jungham I (1988) Growth related changes in protein synthesis and in a 25 kDa protein of Ehrlich ascites tumor cells. Biomed Biochim Acta 47: 557–563

    PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat-shock proteins and development. Adv Genet 24: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Bonner JJ, Parker-Thomburg C, Mortin MA, Pelham HRB (1984) The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37: 979–991

    Article  PubMed  CAS  Google Scholar 

  • Bryant PJ (1987) Experimental and genetic analysis of growth and cell proliferation in Drosophila imaginal discs. In: Bryant P (ed) Genetic regulation of development. Alan R. Liss, New York, pp 339–372

    Google Scholar 

  • Campos-Ortega J A, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Carbajal ME, Duband JL, Lettre F, Valet JP, Tanguay RM (1986) Cellular localization of Drosophila 83kilodaltons heat shock protein in normal, heat-shocked and recovering cultured cells with a specific antibody. Biochem Cell Biol 64: 816–825

    Article  PubMed  CAS  Google Scholar 

  • Carbajal ME, Valet JP, Charest PM, Tanguay RM (1990). Purification of Drosophila hsp83 and immunoelectron microscopic localization. Eur J Cell Biol 52: 147–156

    PubMed  CAS  Google Scholar 

  • Cheney CM, Shearn A (1983) Developmental regulation of Drosophila imaginal discs proteins: synthesis of a heat-shock protein under non-heat shock conditions. Dev Biol 95: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Mitchell HK (1982) Synthesis of the 84,000 dalton protein in normal and heat shocked Drosophila melanogaster cells as detected by specific antibody. Insect Biochem 12: 105–114

    Article  CAS  Google Scholar 

  • Cohen RS, Meselson M (1985) Separate regulatory element for the heat-inducible and ovarian expression of the Drosophila hsp26 gene. Cell 43: 737–746

    Article  PubMed  CAS  Google Scholar 

  • Collier NC, Heuser J, Aach-Levy M, Schlesinger M (1988) Ultrastructural and biochemical analysis of the stress granules in chicken embryo fibroblasts. J Cell Biol 106: 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Corces V, Holmgren R, Freund R, Morimoto R, Meselson M (1980) Four heat shock proteins of Drosophila melanogaster coded within a 12-kilobase region in chromosome subdivision 67B. Proc Natl Acad Sci USA 77: 5390–5393

    Article  PubMed  CAS  Google Scholar 

  • Craig E A, McCarthy BJ (1980) Four Drosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucl Acids Res 8: 4441–4457

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Ingolia TD, Manseau LJ (1983) Expression of Drosophila cognate genes during heat shock and development. Dev Biol 99: 418–426

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Hendricks W, Mulders JWM, Bloemendal H (1989) Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci 14: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Duband JL, Lettre F, Arrigo AP, Tanguay R (1986) Expression and cellular localization of HSP23 in unstressed and heat shocked Drosophila culture cells. Can J Genet Cytol 28: 1088–1092

    CAS  Google Scholar 

  • Dubin R A, Wawrousek EF, Piatigorsky J (1989) Expression of the murine alphaB-crystallin gene is not restricted to the lens. Mol Cell Biol 9: 1083–1091

    PubMed  CAS  Google Scholar 

  • Dubrovsky EB, Zhimulev IF (1988) Trans-regulation of ecdysone-induced protein synthesis in Drosophila melanogaster salivary glands. Dev Biol 127: 33–34

    Article  PubMed  CAS  Google Scholar 

  • Dura JM (1981) Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster. Mol Gen Genet 184: 381–385

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg J C, Elgin SCR (1987) HSP28st1: a P-element insertion mutation that alters the expression of a heat shock gene in Drosophila melanogaster. Genetics 115: 333–340

    PubMed  CAS  Google Scholar 

  • Gaestel M, Gross B, Benndorf R, Strauss M, Schunk W-H, Kraft R, Otto A, Böhm H, Stahl J, Drabsch H, Bielka H (1989)

    Google Scholar 

  • Molecular cloning, sequencing and expression in Escherichia coli of the 25-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. Eur J Biochem 179:209–213

    Google Scholar 

  • Glaser RL, Wolfner MF, Lis JT (1986) Spatial and temporal pattern of HSP26 expression during normal development. EMBO J 5: 747–754

    PubMed  CAS  Google Scholar 

  • Glaser RL, Lis JT (1990) Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosphila melanogaster hsp26 gene. Mol Cell Biol 10: 131–137

    PubMed  CAS  Google Scholar 

  • Haass C, Klein U, Kloetzel PM (1990) Developmental expression of Drosophila melanogaster small heat-shock proteins. J Cell Sci 96: 413–418

    PubMed  CAS  Google Scholar 

  • Handler AM (1982) Ecdysteroid titers during pupal and adult development in Drosophila melanogaster. Dev Biol 93: 73–82

    Article  PubMed  CAS  Google Scholar 

  • Hofman E P, Gerring SL, Corces VG (1987) The ovarian, ecdysterone and heat-shock-responsive promoters of Drosophila melanogaster hsp27 gene react differently to perturbation of DNA sequence. Mol Cell Biol 7: 973–981

    Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci USA 79: 2360–2364

    Article  PubMed  CAS  Google Scholar 

  • Ireland R C, Berger EM (1982) Synthesis of the low molecular weight heat shock proteins stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA 79: 855–859

    Article  PubMed  CAS  Google Scholar 

  • Ireland RC, Berger EM, Sirotkin K, Yund MA, Osterburg D, Fristom J (1982) Ecdysterone induces the transcription of four heat shock genes in Drosophila S3 cells and imaginal discs. Dev Biol 93: 498–507

    Article  PubMed  CAS  Google Scholar 

  • Iwaki T, Kume-Iwaki A, Leim RKH, Goldman J (1989) Alpha-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Gehring WJ (1986) Sequence requirement for expression of the Drosophila melanogaster heat shock protein hsp22 gene during heat shock and normal development. Mol Cell Biol 6: 20112019

    Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol. 109: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Lehner J, O’Farell PH (1989) Expression and function of Drosophila cylin A during embryonic cell cycle progression. Cell 56: 957–968

    Article  PubMed  CAS  Google Scholar 

  • Leicht BG, Bonner JJ (1988) Genetic analysis of chromosomal region 67 A-D of Drosophila melanogaster. Genetics 119: 579–593

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677

    Article  PubMed  CAS  Google Scholar 

  • Loomis WF, Wheeler S (1982) Chromatin-associated heat shock proteins in Dictyostelium. Dev Biol 79: 399–408

    Article  Google Scholar 

  • Macdonald PM, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324: 537–545

    Article  PubMed  CAS  Google Scholar 

  • Mason PJ, Hall LMC, Gausz J (1984) The expression of heat shock genes during normal development in Drosophila melanogaster. Mol Gen Genet 194: 73–78

    Article  CAS  Google Scholar 

  • McGarry TJ, Lindquist S (1986) Inhibition of heat shock protein synthesis by heat inducible antisense RNA. Proc Natl Acad Sci USA 83: 399–403

    Article  PubMed  CAS  Google Scholar 

  • Mestril R, Shiller P, Amin J, Klapper H, Jayakumar A, Voellmy R (1986) Heat shock and ecdysterone activation of Drosophila melanogaster hsp23 gene; a sequence element implied in developmental regulation. EMBO J 5: 1667–1673

    PubMed  CAS  Google Scholar 

  • Mirault ME, Goldschmidt-Clermont M, Moran L, Arrigo AP, Tissières A (1978) The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harbor Symp Quant Biol 48: 819–829

    Article  Google Scholar 

  • Nicole LM, Tanguay, RM (1987) On the specificity of antisense RNA to arrest in vitro translation of mRNA coding for Drosophila hsp23. Biosci Rep 7: 239–246

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9: 1298–1308

    PubMed  CAS  Google Scholar 

  • Palter KB, Watanabe M, Stinson L, Mahowald AP, Craig EA (1986) Expression and localization of Drosophila melanogaster hsp70 cognates proteins. Mol Cell Biol 6: 1187–1203

    PubMed  CAS  Google Scholar 

  • Pauli D, Tonka CH (1987) A Drosophila heat shock gene from locus 67B is expressed during embryogenesis and pupation. J Mol Biol 198: 235–240

    Article  PubMed  CAS  Google Scholar 

  • Pauli D, Tonka CH, Ayme-Southgate A (1988) An unusual split Drosophila heat shock gene expressed during embryogenesis, pupation and testis. J Mol Biol 200: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Pauli D, Arrigo A P, Vasquez J, Tonka CH, Tissières A (1989) Expression of the small heat shock genes during Drosophila development:comparison of the accumulation of hsp 23 and hsp27 mRNAs and polypeptides. Genome 31: 671–676

    Article  PubMed  CAS  Google Scholar 

  • Pauli D, Tonka CH, Tissières A, Arrigo AP (1990) Tissue specific expression of the heat shock protein hsp27 during Drosophila melanogaster development. J Cell Biol 111: 817–828

    Article  PubMed  CAS  Google Scholar 

  • Perkins LA, Doctor J S, Zhang K, Stinson L, Perrimon N, Craig EA (1990) Molecular and developmental. characterization of the heat shock cognate 4 gene of Drosophila melanogaster. Mol Cell Biol 10: 3232–3238

    PubMed  CAS  Google Scholar 

  • Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperature, not for thermotolerance, spore development or germination. Cell 45: 885–894

    Article  PubMed  CAS  Google Scholar 

  • Regazzi R, Eppenberger U, Fabbro D (1988) The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Comm 152: 62–68

    Article  PubMed  CAS  Google Scholar 

  • Riddihough G, Pelham HRB (1986) Activation of the Drosophila hsp27 promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. EMBO J 5: 1653–1658

    PubMed  CAS  Google Scholar 

  • Riddihough G, Pelham HRB (1987) An ecdysone response element in the Drosophila hsp27 promoter. EMBO J 6: 3729–3734

    PubMed  CAS  Google Scholar 

  • Rollet E, Best-Belpomme M (1986) HSP 26 and 27 are phosphorylated in response to heat and ecdysterone in Drosophila melanogaster cells. Biochem Biophys Res Comm 141: 426–433

    Article  PubMed  CAS  Google Scholar 

  • Rossi J, Lindquist S (1989) The intracellular location of yeast heat shock protein 26 varies with metabolism. J Cell Biol 108: 425–439

    Article  PubMed  CAS  Google Scholar 

  • Segal D, Shila BZ (1986) Tissue localization of Drosophila melanogaster ras transcripts during development. Mol Cell Biol 6: 2241–2248

    PubMed  CAS  Google Scholar 

  • Simon MA, Drees B, Kornberg T, Bishop M (1985) The nucleotide sequence and the tissue specific expression of Drosophila c-src. Cell 42: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin K, Davidson N (1982) Developmentally regulated transcription from Drosophila melanogaster site 67B. Dev Biol 89: 196–210

    Article  PubMed  CAS  Google Scholar 

  • Southgate R, Voellmy R (1983) Nucleotide sequence analysis of Drosophila small heat shock gene cluster at locus 67B. J Mol Biol 165: 35–57

    Article  PubMed  CAS  Google Scholar 

  • Southgate R, Mirault ME, Ayme A, Tissières A (1985) Organization, sequences and induction of heat shock genes. In: Atkinson BG, Walden DB (eds) Changes in gene expression in response to environmental stress. Academic Press, Orlando, pp 1–30

    Google Scholar 

  • Tanguay RM (1985) Intracellular localization and possible functions of heat shock proteins. In: Atkinson BG, Walden DB (eds) Changes in gene expression in response to environmental stress. Academic Press, Orlando, pp 91–113

    Chapter  Google Scholar 

  • Tanguay RM (1989) Localized expression of a small heat shock protein, hsp23, in specific cells of the central nervous system during early embryogenesis in Drosophila. J Cell Biol 109: 155a

    Google Scholar 

  • Tanguay RM, Duband JL, Lettre F, Valet JP, Arrigo AP, Nicole L (1985) Biochemical and immunocytochemical localization of heat shock proteins in Drosophila culture cells. Intermediate filaments. Ann N Y Acad Sciences 455: 712–714

    Google Scholar 

  • Thomas SR, Lengyel JA (1986) Ecdysteroid-regulated heat shock gene expression during Drosophila melanogaster development. Dev Biol 115: 434–438

    Article  PubMed  CAS  Google Scholar 

  • Vincent M, Tanguay RM (1982) Different intracellular distribution of heat shock and arsenite induced proteins in Drosophila KC cells. J Mol Biol 162: 365–378

    Article  PubMed  CAS  Google Scholar 

  • Vitek M, Berger EM (1984) Steroid and high temperature induction of the small heat shock protein genes in Drosophila. J Mol Biol 178: 173–189

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Goldschmidt-Clermont M, Southgate R, Tissières A, Levis R, Gehring WJ (1981) A DNA segment isolated from chromosomal site 67B in D. melanogaster contains four closely linked heat shock genes. Cell 45: 185–193

    Google Scholar 

  • Voorter CEM, Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, de Jong, WW (1989) The in vivo phosphorylation sites of bovine alphaB-crystallin. FEBS Lett 259: 1, 50–52

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth S, Craig EA, McCarthy BJ (1980) Genes for three Drosophila heat shock induced proteins at a single locus. Proc Natl Acad Sci USA 77: 2134–2137

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (1985) Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells result in the elevated phophorylation of two 28,000 dalton mammalian stress proteins. J Biol Chem 260: 3058–3062

    PubMed  CAS  Google Scholar 

  • Wistow G (1985) Domain structure and evolution in alpha-crystallins and small heat shock proteins. FEBS Lett 181: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Wistow G, Piatigorsky J (1987) Recruitment of enzymes as lens structural proteins. Science 236: 15541556

    Google Scholar 

  • Wistow G, Piatigorsky J (1988) Lens crystallins:the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57: 479–504

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of Drosophila melanogaster mRNAs in normal development without heat shock. Cell 32: 1161–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arrigo, A.P., Tanguay, R.M. (1991). Expression of Heat Shock Proteins During Development in Drosophila . In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics